ANSI ATIS 0300231-2003 Layer 1 In-Service Transmission Performance Monitoring (Formerly ATIS T1.231).pdf

上传人:diecharacter305 文档编号:433416 上传时间:2018-11-11 格式:PDF 页数:28 大小:183.23KB
下载 相关 举报
ANSI ATIS 0300231-2003 Layer 1 In-Service Transmission Performance Monitoring (Formerly ATIS T1.231).pdf_第1页
第1页 / 共28页
ANSI ATIS 0300231-2003 Layer 1 In-Service Transmission Performance Monitoring (Formerly ATIS T1.231).pdf_第2页
第2页 / 共28页
ANSI ATIS 0300231-2003 Layer 1 In-Service Transmission Performance Monitoring (Formerly ATIS T1.231).pdf_第3页
第3页 / 共28页
ANSI ATIS 0300231-2003 Layer 1 In-Service Transmission Performance Monitoring (Formerly ATIS T1.231).pdf_第4页
第4页 / 共28页
ANSI ATIS 0300231-2003 Layer 1 In-Service Transmission Performance Monitoring (Formerly ATIS T1.231).pdf_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、 AMERICAN NATIONAL STANDARD FOR TELECOMMUNICATIONS ATIS-0300231.2003(R2007) LAYER 1 IN-SERVICE TRANSMISSION PERFORMANCE MONITORING ATIS is the leading technical planning and standards development organization committed to the rapid development of global, market-driven standards for the information,

2、entertainment and communications industry. More than 250 companies actively formulate standards in ATIS 20 Committees, covering issues including: IPTV, Service Oriented Networks, Home Networking, Energy Efficiency, IP-Based and Wireless Technologies, Quality of Service, Billing and Operational Suppo

3、rt. In addition, numerous Incubators, Focus and Exploratory Groups address emerging industry priorities including “Green”, IP Downloadable Security, Next Generation Carrier Interconnect, IPv6 and Convergence. ATIS is the North American Organizational Partner for the 3rd Generation Partnership Projec

4、t (3GPP), a member and major U.S. contributor to the International Telecommunication Union (ITU) Radio and Telecommunications Sectors, and a member of the Inter-American Telecommunication Commission (CITEL). For more information, please visit . AMERICAN NATIONAL STANDARD Approval of an American Nati

5、onal Standard requires review by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly a

6、nd materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made towards their resolution. The use of American National Standards is compl

7、etely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. The American National Standards Institute does not develop s

8、tandards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations sho

9、uld be addressed to the secretariat or sponsor whose name appears on the title page of this standard. CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaf

10、firm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute. Notice of Disclaimer Revision T1.231-1997) American National Standard for Telecommunications Layer 1 In

11、-Service Transmission Performance Monitoring Secretariat Alliance for Telecommunications Industry Solutions Approved October 22, 2003 American National Standards Institute, Inc. Abstract This standard provides performance monitoring (PM) functions and requirements applicable to Layer 1 transmission

12、signals for the covered levels of the North American transmission hierarchy. This standard provides functional requirements to support maintenance and is not meant to be an equipment specification. This standard, and its subparts, supersedes and replaces T1.231-1997 in its entirety. ATIS-0300231.200

13、3 ii Foreword The information contained in this Foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSIs requirements for an ANS. As such, this Foreword may contain material that has not been subjected to public review or a consensus process.

14、In addition, it does not contain requirements necessary for conformance to the standard. This American National Standard is one of a series of maintenance operations standards developed by Technical Subcommittee T1M1 of Committee T1 - Telecommunications. Committee T1 standards serve the public throu

15、gh improved understanding between carriers, end-users, and manufacturers. This standard specifies a basic set of monitoring requirements, and provides criteria that is common to a set of standards, the T1.231 series, which define applications for a specific level in the hierarchy. The documents, whi

16、ch are included in the T1.231 series (at the time that this document is approved), are listed below: T1.231-2003, Layer 1 In-Service Transmission Performance Monitoring. T1.231.01-2003, DSL Layer 1 In-Service Digital Transmission Performance Monitoring. T1.231.02-2003, DS1 Layer 1 In-Service Digital

17、 Transmission Performance Monitoring. T1.231.03-2003, DS3 Layer 1 In-Service Digital Transmission Performance Monitoring. T1.231.04-2003, SONET Layer 1 In-Service Digital Transmission Performance Monitoring. T1.231.05-200x, OTN Layer 1 In-Service Transmission Performance Monitoring. (This standard i

18、s not yet approved.) This standard will be useful to anyone engaged in the design, provisioning, or operation, of telecommunications equipment or services, utilizing transmission technologies. The standard establishes uniform and consistent performance monitoring (PM) functions and requirements appl

19、icable to Layer 1 transmission signals for the covered levels of the North American transmission hierarchy. This standard is intended to be a living document, subject to revision and updating as warranted by advances in transmission technologies Compliance with the standard should provide uniform an

20、d consistent measurement parameters and techniques for circuits, facilities, and networks. In some cases, location-oriented options are needed to ensure compatibility: this need for options is imposed by significant differences between network providers as well as between network elements Requiremen

21、ts are designated by the word shall, while recommendations utilize the word should. Requirements specify the minimum acceptable functionality for effective PM in a network element; recommendations identify functionality that may enhance PM capabilities for some users. There are four annexes in this

22、document. All are informative, and are not considered part of the standard. Suggestions for the improvement of this standard will be welcome They should be sent to the Alliance for Telecommunications Industry Solutions, 1200 G Street, NW, Suite 500, Washington, DC, 20005. This standard was processed

23、 and approved for submittal to ANSI by Accredited Standards Committee on Telecommunications, T1. Committee approval of the standard does not necessarily imply that all members voted for its approval. At the time it approved this standard, the T1 Committee had the following members: E.R. Hapeman, T1

24、Chair W.R. Zeuch, T1 Vice-Chair J.A. Crandall, T1 Director S.M. Carioti, T1 Disciplines S.D. Barclay, T1 Secretary C.A. Underkoffler, T1 Chief Editor T. Malpass, T1M1 Technical Editor EXCHANGE CARRIERS Organization Represented Name of Representative AT 2) testing; and 3) restoration. Each is describ

25、ed briefly below; additionally, surveillance is discussed in more detail in 4.2, while testing and restoration are not addressed further in this standard. In addition to the philosophies identified here, G.7710 also includes additional performance management applications. 4.1.1 Surveillance Surveill

26、ance refers to the real-time, non-intrusive monitoring of the various components of a network, so that performance degradations can be identified before customer service is adversely affected. 4.1.2 Testing In the classic sense, testing is the process of verifying failures or performance degradation

27、s by subjecting particular network entities to predetermined inputs (such as quasi-random test signals) and measuring the resulting response. The test signals are often applied to the entire digital bit stream, thus requiring that testing be done on an intrusive (out-of-service) basis. An example is

28、 the loopback test performed on a transmission line to sectionalize a failure. Modern digital signal formats (e.g., DS1 ESF, DS3 C-bit parity, and SONET) provide capabilities that permit the development of non-intrusive testing through the use of the signal overhead. Predetermined signals can be app

29、lied to the overhead channel without affecting the customer payload. Maintenance functions such as trouble isolation can now be accomplished without interruption of service. This standard provides a forward-looking platform to develop the concept of trouble diagnosis on a non-intrusive basis via the

30、 use of digital signal overhead analysis. ATIS-0300231.2003 5 4.1.3 Restoration Restoration refers to the process of rerouting the service of a particular network entity that has suffered a failure or a severe performance degradation. Network restoration can range from simple protection switching of

31、 a transmission line to more complicated rerouting of traffic around a failed switch, cross-connect system, central office, etc. 4.2 Fundamental elements of network surveillance Surveillance has two distinct, but related, functional elements. These are alarm/status monitoring and performance monitor

32、ing (PM). 4.2.1 Alarm/status monitoring Alarm/status monitoring is a process that tracks failure events to contribute to an understanding of the overall transmission performance of an entity. The information conveyed via alarm/status monitoring consists of a set of binary data, known as indications

33、that are maintained by the Network Element (NE). The NE sets and clears indications according to well-defined criteria based on the occurrence and duration of specific events. Some events lead immediately to indications, while others must persist for a specified soaking time prior to the setting of

34、an indication. Discussions related to alarm/status monitoring in this standard are limited to monitoring of transmission failures. 4.2.2 Performance Monitoring (PM) Performance monitoring is the process of continuous collection, analysis, and reporting of performance data associated with a transmiss

35、ion entity. In the context of this standard, the term performance monitoring (PM) refers to the set of functions and capabilities necessary for an NE to gather, store, threshold (see below), and report performance data associated with its monitored transmission entities. These performance-related da

36、ta elements are termed performance parameters. Figure 1 shows a graphical representation of this process. The fundamental building blocks of the various performance parameters are a set of primitives detectable from the monitored signal. For instance, a common performance primitive is the block codi

37、ng error detected from a monitored transmission signal (e.g., a CRC-6 code violation in a DS1 ESF signal). This primitive is the basis for generation and storage of performance parameters such as Errored Seconds (ES) and Severely Errored Seconds (SES). For some signals, performance primitives in the

38、 incoming direction are reported to the far-end via special messages embedded within the signal format. Examples include: the Performance Report Message (PRM) in DS1 ESF, Far-End Block Error (FEBE) indicators in DS3 C-bit applications, and Remote Error Indicators (REI) in SONET. With such a capabili

39、ty built into a transmission signal, part of the monitoring functions (derivation, storage, thresholding, and reporting of parameters) for transmission performance observed at the far-end can be provided at the near-end. In contrast with alarm/status indications, performance parameters are quantitat

40、ive - not binary - in nature. Furthermore, alarm and status indications are generally reported under failure events, while performance parameters are normally gathered under in-service, non-failure conditions. Thus, alarm/status monitoring and PM complement one another as basic tools of surveillance

41、-based maintenance. Performance parameters are accumulated over predetermined accumulation periods (normally 15 minutes and one day), and are maintained in designated storage registers; see 6.1.2.1 for register definitions. At the end of every accumulation period (i.e., at the end of each 15 minutes

42、 for 15-minute and at the end of each day for day performance registers), the current value of the performance parameter register is saved in its corresponding “previous period“ register, and the current register is initialized. Depending on the type of the performance parameter, additional register

43、s may be provided to maintain a recent history of the parameter (e.g., 31 additional 15-minute registers for errored seconds, etc.). Performance history data is useful for verifying customer trouble reports and in responding to alerts, so as to quickly assess the recent performance of transport syst

44、ems and to sectionalize the trouble or degradation. This history can also be used in performance assessment against long-term performance objectives. It is expected that degradations in transmission performance are automatically communicated based on their relationship to a particular threshold valu

45、e. Most performance parameters have a corresponding settable threshold. If, at any time during the accumulation period, the current value of a performance parameter reaches or exceeds its corresponding threshold value, a Threshold Crossing Alert (TCA) or Out of Range Alert (ORA) message is generated

46、 and sent. Thus, alert messages can convey the early indication that the performance of a given transmission entity may have degraded and that a maintenance action may be warranted. ATIS-0300231.2003 6 Defect AnomalyFailureGenerateparametersThresholding CurrentPreviousRecentAlarmindicationsAlertmess

47、agesCurrentdataHistoricdataStoragePrimitivesFigure 1 - Performance Monitoring Process 4.3 Performance Estimation PM must support the functions of service quality assessment. Defined performance parameters and data collection and storage techniques must provide the capability to construct a view of p

48、erformance. This is accomplished by ensuring that approximations of bit error statistics can be derived from the defined parameters. For example, counts of cyclic redundancy check (CRC) code violations enable the direct calculation of block error ratios, thereby allowing an estimation of minimum bit

49、 error ratios (BERs). The additional information of ES and SES counts permits an estimation of the degree of burstiness of the errors, which may help identify the source of the errors. Similarly, the character of the error statistics may indicate the effect of the degradation on specific services. Random errors at a relatively low BER, for example, may have a significant effect on a packet service, but little effect on a video service; conversely, bursty errors even at a high BER may have little effect on a packet service, but significant effect on ATIS-0300231.2003 7 a vi

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1