ANSI IEEE 1070-2006 Guide for the Design and Testing of Transmission Modular Restoration Structure Components《电力传输模块恢复结构元件设计和试验指南》.pdf

上传人:terrorscript155 文档编号:434974 上传时间:2018-11-11 格式:PDF 页数:25 大小:2.54MB
下载 相关 举报
ANSI IEEE 1070-2006 Guide for the Design and Testing of Transmission Modular Restoration Structure Components《电力传输模块恢复结构元件设计和试验指南》.pdf_第1页
第1页 / 共25页
ANSI IEEE 1070-2006 Guide for the Design and Testing of Transmission Modular Restoration Structure Components《电力传输模块恢复结构元件设计和试验指南》.pdf_第2页
第2页 / 共25页
ANSI IEEE 1070-2006 Guide for the Design and Testing of Transmission Modular Restoration Structure Components《电力传输模块恢复结构元件设计和试验指南》.pdf_第3页
第3页 / 共25页
ANSI IEEE 1070-2006 Guide for the Design and Testing of Transmission Modular Restoration Structure Components《电力传输模块恢复结构元件设计和试验指南》.pdf_第4页
第4页 / 共25页
ANSI IEEE 1070-2006 Guide for the Design and Testing of Transmission Modular Restoration Structure Components《电力传输模块恢复结构元件设计和试验指南》.pdf_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、IEEE Std 1070-2006(Revision of IEEE 1070-1995)IEEE Guide for the Design and Testingof Transmission Modular RestorationStructure ComponentsI E E E3 Park Avenue New York, NY10016-5997, USA8 December 2006IEEE Power Engineering SocietySponsored by theTransmission and Distribution CommitteeRecognized as

2、anAmerican National Standard (ANSI)IEEE Std 1070-2006(R2012)(Revision ofIEEE Std 1070-1995)IEEE Guide for the Design and Testingof Transmission Modular RestorationStructure ComponentsSponsor Transmission and Distribution Committeeof theIEEE Power Engineering SocietyApproved 18 October 2006American N

3、ational Standards InstituteApproved 8 June 2006Reaffirmed 29 March 2012IEEE SA-Standards BoardThe Institute of Electrical and Electronics Engineers, Inc.3 Park Avenue, New York, NY 10016-5997, USACopyright 2006 by the Institute of Electrical and Electronics Engineers, Inc.All rights reserved. Publis

4、hed 8 December 2006. Printed in the United States of America.IEEE is a registered trademark in the U.S. Patent +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center. iv Copyright 2006 IEE

5、E. All rights reserved. Introduction This introduction is not part of IEEE Std 1070-2006, IEEE Guide for the Design and Testing of Transmission Modular Restoration Structure Components. In the past years, most of the utilities in North America have joined together through mutual aid programs to help

6、 one another in case of emergencies. As part of the mutual aid for transmission, a modular restoration structure was developed and is now being used by several utilities worldwide. The versatility of this structure and its contribution to the utility industry prompted the preparation of this guide.

7、This guide is generic in its design so that any utility desiring to use the modular concept as part of a mutual aid plan can do so. Structures built to this design would then be compatible with the structures of another company using the same concept. This feature affords many positive results in th

8、at savings are realized in crew training, crew readiness for emergencies, and total investment of emergency structures (i.e., fewer structures because structures could be loaned from mutual aid participants). Of course, this modular concept is not limited to any particular application. Numerous requ

9、ests for a generic design of a modular structure were received from throughout the industry. The Subcommittee on the Engineering in the Safety, Maintenance and Operation of Lines (ESMOL), part of the Transmission and Distribution (T see Figure 1 (A and B). 3.2 Design considerations7The 610 mm 610 mm

10、 lattice column was designed with aluminum diagonal angles to a compressive load of 334 kN at a column height of 25.6 m. The basic column section is 6.4 m with other column heights of 4.27 m and 2.13 m. These combinations allow considerable flexibility in building structures for most standard transm

11、ission voltages. These three lengths maintain the same diagonal spacing for ease of climbing. The entire column assembly is welded for consistency, strength and to eliminate the loss of bolted members. The column end plates have guide pins and mating holes for ease in assembly. The assembly hole pat

12、tern on the end plates has the same spacing throughout, and it meshes with all other components. A 4 in channel is placed next to the end plates to create a stacking slot. A hole is centered in the column end plates and can be used for a load line through the center section of the columns. The found

13、ation base has the same assembly hole pattern as the columns. Handholds (lifting rings) are provided, and large holes conveniently spaced are for stabilizing bars, which can be driven into the ground or bolted to a crib of crossarms or cross ties. The guy plates fit between the column sections to se

14、rve as guy wire and insulator attachment points. The assembly bolts are long enough to connect two column end plates and three guy plates, as required. The three holes in the guy plates are to accommodate spread or straight guys. If a temporary guy is necessary, the permanent guys can be installed w

15、ithout affecting the temporary guy. The box section is available to support horizontal post insulators, provide vertical spacing for bundle conductors and attachment points high strength guy plates, if required. The box section has the same assembly hole pattern and can be used between column sectio

16、ns and guy plates or above the foundation to help level a structure. The gimbal is 2.13 m high and meshes with the foundation and column end plates. According to its intended use, the gimbal can remain a pivot, or it can be connected in a rigid manner with stays. Combinations of these parts can make

17、 a variety of structures, as shown in Goodreid and Magwood B6, Grose B7, and Van Name, et al. B13. 6Information on references can be found in Clause 2. 7See Cole B3. IEEE Std 1070-2006 IEEE Guide for the Design and Testing of Transmission Modular Restoration Structure Components 4 Copyright 2006 IEE

18、E. All rights reserved. NOTE 1All dimensions are in millimeters unless otherwise noted.8NOTE 2Structure fabrication should conform to Clause 3. NOTE 3Each section to be supplied with ten bolts, nuts, and lock washers in accordance with 3.1. NOTE 4The 25 guide pins should be on opposite corners NOTE

19、5Affix eight stainless steel washers to the eight 18 holes on each tower end plate as shown. Figure 1 AColumn section design tolerance 8Notes in text, tables, and figures are given for information only, and do not contain requirements needed to implement the guide. IEEE Std 1070-2006 IEEE Guide for

20、the Design and Testing of Transmission Modular Restoration Structure Components 5 Copyright 2006 IEEE. All rights reserved. NOTE 1Structure fabrication should conform to Clause 3. NOTE 2Each section to be supplied with ten bolts, nuts, and lock washers in accordance with 3.1. NOTE 3The 25 guide pins

21、 should be on opposite corners. Figure 1 BColumn section design and tolerance 3.2.1 Column design and tolerance For column sections, all manufacturing tolerances and basic design should be as specified in Figure 1. The number of diagonals required for each tower section should be as specified in Fig

22、ure 1. The diagonals should be positioned on the tower with all flanges located in the same direction, as shown in Figure 1, to facilitate tower climbing. 3.2.2 End plate design and tolerance For end plates, all manufacturing tolerances and basic design should be as specified in Figure 1. The perpen

23、dicularity tolerance should be a maximum deviation of 3.17 mm over a 610 mm distance. 3.2.3 Guy plate design and tolerance For guy plates, basic design and all manufacturing tolerances should be as specified in Figure 2. IEEE Std 1070-2006 IEEE Guide for the Design and Testing of Transmission Modula

24、r Restoration Structure Components 6 Copyright 2006 IEEE. All rights reserved. 3.2.4 Gimbal design and tolerance For gimbals, basic design and all manufacturing tolerances should be as specified in Figure 3. 3.2.5 Foundation base design and tolerance For foundation bases, basic design and all manufa

25、cturing tolerances should be as specified in Figure 4. 3.2.6 Box section design and tolerance For box sections, basic design and all manufacturing tolerances should be as specified in Figure 5. 3.2.7 Workmanship All work should be performed using the best modern practices of the industry. Material s

26、hould be as specified in 3.1 (new and free of defects or irregularities). All components of the same design and designation should be identical; like components should be interchangeable. All corners should be rounded and sharp edges should be broken. 3.3 Fabrication Fabrication should not begin unt

27、il the purchaser has approved drawings. The best modern practices should be used in the manufacture and fabrication of the types of materials covered in this guide. 3.3.1 Bending All bending should maintain sufficient thickness of material in order to provide full strength without impairing the mate

28、rial. 3.3.2 Cutting Cutting of plates and structural shapes should be guided by electrical or mechanical means to assure a neat, accurate cut. Cuts should be clean and free from sharp edges. 3.3.3 Drilling and milling All load-bearing holes should be drilled, and all slots should be milled in all ma

29、terial thicknesses. Punching of holes or slots is not recommended. 3.3.4 Welding procedures Welding procedures should be in accordance with American Welding Societys Aluminum Structural Welding Code. All welds should completely seal. There should be no voids or seams between joining surfaces into wh

30、ich fluids may enter. Welders and welding operators should be qualified in accordance with ANSI/AWS D1.2. IEEE Std 1070-2006 IEEE Guide for the Design and Testing of Transmission Modular Restoration Structure Components 7 Copyright 2006 IEEE. All rights reserved. NOTE 1All dimensions are in millimet

31、ers unless otherwise noted. NOTE 2Holes on plates 1, 2 and 3 should be interchangeable with holes on towers, foundation base, and box section as shown in Figure 1, Figure 4, and Figure 5. Figure 2 Guy plate design and tolerance IEEE Std 1070-2006 IEEE Guide for the Design and Testing of Transmission

32、 Modular Restoration Structure Components 8 Copyright 2006 IEEE. All rights reserved. NOTE 1All dimensions are in millimeters unless otherwise noted. NOTE 2Holes on gimbal section top and bottom flange should be interchangeable with holes on towers, foundation base, and box section as shown in Figur

33、e 1, Figure 4, and Figure 5. NOTE 3The gimbal section should be designed to be locked rigidly parallel to the two axes for ease of storage and transportation. When unlocked, the top section of the gimbal should be able to rotate as follows: a. 90about the Y-axis (see detail A) b. 90about the X-axis

34、(see detail B) c. 360about the Z-axis (see detail C) d. 45about the XY-axis (see detail D) NOTE 4When unlocked, all three axes of the gimbal should be mechanically held together so that any rotations, or combination of rotations as described in Note 2, should not cause the top and base sections to s

35、eparate. NOTE 5When unlocked, the gimbal should be designed to allow disconnecting the top section from the bottom section. NOTE 6The X-axis and Y-axis should be a maximum of 483 mm above the flange of the base section and should be at least 127 mm above the flange of the base section. NOTE 7Each gi

36、mbal section to be supplied with ten bolts, nuts, and lock washers in accordance with 3.1. Figure 3 Gimbal design and tolerance IEEE Std 1070-2006 IEEE Guide for the Design and Testing of Transmission Modular Restoration Structure Components 9 Copyright 2006 IEEE. All rights reserved. NOTEHoles on b

37、ase flange should be interchangeable with holes on towers, gimbals, and box sections as shown on Figure 1, Figure 3, and Figure 5. Figure 4 Foundation base design and tolerance IEEE Std 1070-2006 IEEE Guide for the Design and Testing of Transmission Modular Restoration Structure Components 10 Copyri

38、ght 2006 IEEE. All rights reserved. NOTEHoles on box section top and bottom flange should be interchangeable with holes on towers, gimbals, and foundation bases as shown on Figure 1, Figure 3, and Figure 4. Figure 5 Box section design and tolerance IEEE Std 1070-2006 IEEE Guide for the Design and Te

39、sting of Transmission Modular Restoration Structure Components 11 Copyright 2006 IEEE. All rights reserved. 4. Test requirements 4.1 Strength test verification The first production units of 6.4 m column sections, guy plates, and box sections should be tested by the manufacturer as specified in 4.1.1

40、 through 4.2.3 and as illustrated in Figure 6 through Figure 16. A detailed test report should be submitted. Elastic and permanent deformation of each component should be measured to 0.025 mm, at load intervals of 50%, 75%, 90%, and 100% of the maximum test load and recorded in the test report. All

41、test loads should be held for 5 min before measurements are taken. If the manufacturer has previously tested the same design, in accordance with these or equivalent requirements, and manufactured the same assemblies listed below, the results of those tests may be submitted in lieu of performing new

42、tests. 4.1.1 Compression of the columns A 6.4 m column should be tested to 290 kN, with compression applied at the center axis (see Figure 6). Maximum permanent deformation should be less than 0.508 mm. Figure 6 Compressive load test 4.1.2 Bending of columns Using production bolts and nuts, a 6.4 m

43、column section should be bolted to a suitable test structure on one end of the column. A cantilever load of 11.34 kN should then be applied at the center axis of the opposite end without failure (see Figure 7). Maximum permanent deformation should be less than 2.032 mm. Figure 7 Cantilever load test

44、 IEEE Std 1070-2006 IEEE Guide for the Design and Testing of Transmission Modular Restoration Structure Components 12 Copyright 2006 IEEE. All rights reserved. 4.1.3 Torsion strength A 6.4 m column section should be tested as in 4.1.2 except that an 8 kN load should be applied at the cantilevered en

45、d at a point 0.457 m from the center axis of the column without failure (see Figure 8). Maximum permanent rotational deformation of the column should be less than 0.5. Figure 8 Torsional load test 4.1.4 Combined bending and compression test A 6.4 m column section should be loaded to 445 kN compressi

46、on and 22.2 kN cantilever load simultaneously. The loads, elastic and permanent deflections, should be measured and recorded (see Figure 9). Maximum permanent deformation should be less than 0.508 mm in compression and 2.54 mm in bending. Figure 9 Compressive and cantilever load test 4.1.5 Ultimate

47、strength bendingbolts Using production bolts and nuts, a 6.4 m column section should be bolted to a suitable test structure on one end of the column (identical to Figure 7 except with the loads specified in the following sentences in this paragraph). A load should be applied at a rate not to exceed

48、8.9 kN/min. The combined assembly of column, bolts, and nuts should have an ultimate strength greater than an equivalent moment of 190 000 Nm. The first component to fail should be the bolt and nut assemblies. The welded column should not be the first to fail; however, secondary failure of the welds

49、 after a bolt failure is permissible. 4.1.6 Ultimate strength bendingwelds Using extra high strength bolts and nuts, a 6.4 m column section should be bolted to a suitable test structure on one end of the column (identical to Figure 7 except with the loads specified in the following sentences in this paragraph). Four tests should be performed by rotating the column. A load should be applied at a rate not to exceed 8.9 kN/min unless failure occurs. In no case should the column have an ultimate strength less than an e

展开阅读全文
相关资源
  • ANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdfANSI Z97 1-2009 American National Standard for Safety Glazing Materials used in Buildings - Safety Performance Specifications and Methods of Test《建筑物中窗用玻璃材料安全性用.pdf
  • ANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdfANSI Z97 1 ERTA-2010 Re ANSI Z97 1 - 2009 Errata《修订版 美国国家标准学会Z97 1-2009标准的勘误表》.pdf
  • ANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdfANSI Z21 40 2a-1997 Gas-Fired Work Activated Air-Conditioning and Heat Pump Appliances (Same as CGA 2 92a)《燃气、工作激活空气调节和热泵器具(同 CGA 2 92a)》.pdf
  • ANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdfANSI Z124 9-2004 American National Standard for Plastic Urinal Fixtures《塑料小便器用美国国家标准》.pdf
  • ANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdfANSI Z124 4-2006 American National Standard for Plastic Water Closet Bowls and Tanks《塑料抽水马桶和水箱用美国国家标准》.pdf
  • ANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdfANSI Z124 3-2005 American National Standard for Plastic Lavatories《塑料洗脸盆用美国国家标准》.pdf
  • ANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdfANSI T1 659-1996 Telecommunications - Mobility Management Application Protocol (MMAP) RCF-RACF Operations《电信 可移动管理应用协议(MMAP) RCF-RACF操作》.pdf
  • ANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdfANSI T1 651-1996 Telecommunications – Mobility Management Application Protocol (MMAP)《电信 可移动性管理应用协议》.pdf
  • ANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdfANSI T1 609-1999 Interworking between the ISDN User-Network Interface Protocol and the Signalling System Number 7 ISDN User Part《电信 ISDN用户间网络接口协议和7号信令系统ISDN用户部分.pdf
  • ANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdfANSI T1 605-1991 Integrated Services Digital Network (ISDN) - Basic Access Interface for S and T Reference Points (Layer 1 Specification)《综合服务数字网络(ISDN) S和T基准点的.pdf
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ANSI

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1