1、ANSI N42.44-2008American National Standard for the Performance of Checkpoint Cabinet X-Ray Imaging Security SystemsIEEE3 Park Avenue New York, NY 10016-5997, USA4 November 2008Accredited by the American National Standards InstituteSponsored by theNational Committee on Radiation Instrumentation, N42N
2、42.44ANSI N42.44-2008 American National Standard for the Performance of Checkpoint Cabinet X-Ray Imaging Security Systems Sponsor National Committee on Radiation Instrumentation, N42 Accredited by the American National Standards Institute Secretariat Institute of Electrical and Electronics Engineers
3、, Inc. Approved 4 August 2008 American National Standards Institute Abstract: This document establishes standards for the technical performance of cabinet x-ray imaging systems used for screening at security checkpoints and other inspection venues. Keywords: cabinet x-ray, checkpoint, minimum perfor
4、mance The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA Copyright 2008 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 4 November 2008. Printed in the United States of America. IEEE is a registered tr
5、ademark in the U.S. Patent +1-978-750-8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center. Introduction This introduction is not part of ANSI N42.44-2008, American National Standard for the Perfor
6、mance of Checkpoint Cabinet X-Ray Imaging Security Systems. This standard is the responsibility of the Accredited American Standards Committee on Radiation Instrumentation, N42. The standard was approved by the N42 letter ballot of March 2008July 2008. Notice to users Laws and regulations Users of t
7、hese documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. I
8、EEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so. Copyrights This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses.
9、 These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rig
10、hts in copyright to this document. Updating of IEEE documents Users of IEEE standards should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE doc
11、ument at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or erra
12、ta, visit the IEEE Standards Association web site at http:/ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously. For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA web site at http:/standards.i
13、eee.org. v Copyright 2008 IEEE. All rights reserved. Errata Errata, if any, for this and all other standards can be accessed at the following URL: http:/standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically. Interpretations Current
14、interpretations can be accessed at the following URL: http:/standards.ieee.org/reading/ieee/interp/ index.html. Patents Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position
15、 is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims or determining whethe
16、r any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infr
17、ingement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association. vi Copyright 2008 IEEE. All rights reserved. Participants At the time it approved this standard, the Accredited Standards Committee on Radiation Instrumentation, N4
18、2, had the following membership: Michael P. Unterweger, Chair Louis Costrell, Deputy Chair William Ash, Administrative Secretary Organization Represented.Name of Representative Bartlett Services .Morgan Cox Canberra Markku Koskelo Chew, M.H .Jack M. Selby Commerce Dept, U.S. NIST Michael P. Unterweg
19、er Louis Costrell (Alt.) Consultant Frank X. Masse Department of Homeland Security .Peter Shebell Entergy-ANO .Ron Schwartz Health Physics Society .Sandy Perle IEEE Louis Costrell .Anthony Spurgin (Alt.) .Michael P. Unterweger (Alt.) International Medcom Don Sythe Lawrence Berkeley National Lab .Edw
20、ard J. Lampo Lawrence Livermore National Lab .Gary Johnson NASA, GSFC . R. Sachidananda Babu Nuclear Regulatory Commission Cynthia Jones Nuclear Standards Unlimited .Al N. Tschaeche Oak Ridge National Laboratory .Peter J. Chiaro, Jr. .Charles Britton (Alt.) ORTEC Ronald M. Keyser Pacific Northwest N
21、ational Laboratory .Richard Kouzes Swinth Associates .Kenneth L. Swinth U.S. Army Edward Groeber U.S. Nuclear Regulatory CommissionCynthia G. Jones Members-At-Large .Ernesto Corte .Joseph C. McDonald .Paul L. Phelps .Joseph Stencel .Lee J. Wagner vii Copyright 2008 IEEE. All rights reserved. viii Co
22、pyright 2008 IEEE. All rights reserved. At the time this standard was completed, Subcommittee N42.HSI had the following membership: Morgan Cox, Co-Chair Michael P. Unterweger, Co-Chair Paul Bailey Peter J. Chairo, Jr. David Gilliam Mark Hoover Cynthia G. Jones Ronald Keyser Richard Kouzes Joseph C.
23、McDonald Leticia Pibida Brian Rees Peter Shebell David Trombino At the time this standard was completed, the ANSI N42.44 Working Group had the following membership: Mike Barrientos, Chair Douglas Smith, Vice Chair Steve Brown Frank Cerra Todd Conway Andy Dancisin Peter Edelstein Richard Eilbert John
24、 Ely Jack Fenwick Gordon Gillerman Kurt Fischer Scott Kravis James Lamers Art Mario Paul Mongeon Ed Ocker Harry Pak Fred Roder John Santos Stephen Seltzer Peter Stacey Doug Yatsuhashi Orie Zaklad Contents 1. Overview 1 1.1 Scope . 2 1.2 Purpose 3 2. Normative references 3 3. Definitions 4 4. General
25、 considerations . 5 4.1 Special word usage 5 4.2 Environmental factors 5 4.3 Radiological safety 6 4.4 Electrical and mechanical safety 6 4.5 Electromagnetic compatibility. 6 4.6 Limitation of x-ray exposure to photographic film 8 5. Imaging-performance evaluation procedures . 9 5.1 Imaging-performa
26、nce test object . 9 5.2 Imaging-performance test procedure . 9 5.3 Imaging-performance evaluation considerations.10 6. Minimum acceptable imaging performance . 10 Annex A (informative) Test reports . 12 Annex B (informative) Human-factors engineering considerations. 17 ix Copyright 2008 IEEE. All ri
27、ghts reserved. American National Standard for the Performance of Checkpoint Cabinet X-Ray Imaging Security Systems IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or environmental protection in all circumstances. Implementers of the standard are responsible for de
28、termining appropriate safety, security, environmental, and health practices or regulatory requirements. This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found
29、under the heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” They can also be obtained on request from IEEE or viewed at http:/standards.ieee.org/IPR/disclaimers.html. 1. Overview Numerous measures of imaging performance for x-ray screening systems have been
30、 defined over the past several years. For example, penetration, spatial resolution, and wire gauge diameter are well-known and frequently used measures for defining an x-ray systems imaging performance. ASTM F792-011establishes nine tests to determine the performance levels of an x-ray system. These
31、 tests have been widely accepted by the x-ray screening community, both manufacturers and users, and are adopted in this standard. This document establishes minimum performance requirements for the nine tests of the ASTM F792-01 test method as applied to checkpoint cabinet x-ray systems. A well-defi
32、ned test method and a set of minimum acceptable image-quality standards will provide value to both users and manufacturers of these x-ray imaging security systems. Manufacturers will have a better understanding of the needs, wants, and expectations of the user community and a clearer understanding o
33、f the minimum set of imaging goals. It is understood that some users will require image-quality standards higher than the minimum performance required in this standard. Additionally, this standard provides a number of safety requirements, derived from a variety of standards documents and federal reg
34、ulations, that are essential to the responsible operation of checkpoint cabinet x-ray systems. These include: radiological safety, electrical and mechanical safety, electromagnetic compatibility, and limitation of x-ray exposure to scanned objects (e.g., photographic film). 1Information on reference
35、s can be found in Clause 2. 1 Copyright 2008 IEEE. All rights reserved. ANSI N42.44-2008 American National Standard for the Performance of Checkpoint Cabinet X-Ray Imaging Security Systems Sample test reports are given in Annex A (informative). Selected human-factors engineering considerations are i
36、ncluded in Annex B (informative). 1.1 Scope This document establishes standards for the technical performance of cabinet x-ray imaging systems used for screening at security checkpoints and other inspection venues. Included are all x-ray systems designed primarily for the inspection of baggage at ai
37、rline, railroad, and bus terminals, and in similar facilities. An x-ray tube used within a shielded part of a building, or x-ray equipment that may temporarily or occasionally incorporate portable shielding, is not considered to be a cabinet x-ray system. Hereinafter, systems covered by the scope of
38、 this standard are referred to as the system. This standard applies to x-ray imaging equipment with all of the following characteristics: Meet the definition of cabinet x-ray systems as given in 21 CFR 1020.40 Operate at or above 120 kV Have tunnel nominal dimensions of up to 1.1 m 1.1 m Provide a s
39、ingle-view direct-projection image as the primary image Are used to examine items to detect prohibited and illicit materials at security-checkpoint locations (e.g., airports, seaports, land border crossings, office buildings, court houses, correctional institutions, nuclear power facilities, militar
40、y facilities, commercial shipping and receiving stations, stations used for manifest verification) For further clarification, systems included in this standard can be those with or without organic/inorganic differentiation, with or without active or passive threat alerts, and those incorporating mul
41、ti-view and computed-tomography (CT) imaging (if the primary image presented is a single-view projection image), if they have all of the characteristics found in the list above. This standard therefore is not intended for x-ray imaging systems with any of the following characteristics: Operate at po
42、tentials that are less than 120 kV Are not cabinet systems (e.g., open bomb-squad systems) Do not present a direct-projection image Can provide a projection image only through image reconstruction from multiple views Are based primarily on the use of CT Are used for medical diagnostic imaging Are us
43、ed for non-destructive evaluation (NDE) or non-destructive testing (NDT), industrial quality control (e.g., food inspection), industrial sortation of recyclables or natural resource extraction, systems used for scientific research purposes Are based only on backscattered or coherently scattered x-ra
44、ys This standard specifies minimum requirements and test procedures for x-ray imaging performance, radiation-limitation requirements, and electrical, mechanical, and environmental requirements. This standard addresses technical image-quality performance, not threat-detection performance. 2 Copyright
45、 2008 IEEE. All rights reserved. ANSI N42.44-2008 American National Standard for the Performance of Checkpoint Cabinet X-Ray Imaging Security Systems 1.2 Purpose Screeners frequently use the images provided by checkpoint x-ray systems to detect weapons and contraband materials, as well as to verify
46、manifests (to determine that the contents of a package are what they are purported to be). For these applications, this standard is intended to provide procurers and/or prospective users of checkpoint x-ray systems with: test methods that facilitate performance comparisons among systems, and the min
47、imum acceptable imaging-performance requirements. These values are achievable in the current state of the art of production checkpoint x-ray systems. Additionally, a variety of factors essential for the safe operation of checkpoint x-ray systems are assembled and standardized in this document. While it appears logical that better imaging performance w