ASTM C552-2015 Standard Specification for Cellular Glass Thermal Insulation《多孔玻璃隔热材料的标准规格》.pdf

上传人:王申宇 文档编号:467002 上传时间:2018-11-27 格式:PDF 页数:7 大小:117.01KB
下载 相关 举报
ASTM C552-2015 Standard Specification for Cellular Glass Thermal Insulation《多孔玻璃隔热材料的标准规格》.pdf_第1页
第1页 / 共7页
ASTM C552-2015 Standard Specification for Cellular Glass Thermal Insulation《多孔玻璃隔热材料的标准规格》.pdf_第2页
第2页 / 共7页
ASTM C552-2015 Standard Specification for Cellular Glass Thermal Insulation《多孔玻璃隔热材料的标准规格》.pdf_第3页
第3页 / 共7页
ASTM C552-2015 Standard Specification for Cellular Glass Thermal Insulation《多孔玻璃隔热材料的标准规格》.pdf_第4页
第4页 / 共7页
ASTM C552-2015 Standard Specification for Cellular Glass Thermal Insulation《多孔玻璃隔热材料的标准规格》.pdf_第5页
第5页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: C552 15Standard Specification forCellular Glass Thermal Insulation1This standard is issued under the fixed designation C552; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parent

2、heses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. Scope1.1 This specification covers the composition, sizes,dimensions, and

3、physical properties of cellular glass thermalinsulation intended for use on surfaces operating at tempera-tures between 450 and 800F (268 and 427C). It is possiblethat special fabrication or techniques for pipe insulation, orboth, will be required for application in the temperature rangefrom 250 to

4、800F (121 to 427C). Contact the manufacturerfor recommendations regarding fabrication and applicationprocedures for use in this temperature range. For specificapplications, the actual temperature limits shall be agreed uponbetween the manufacturer and the purchaser.1.2 It is anticipated that single-

5、layer pipe insulation in halfsections or the inner layer of a multilayer system have thepotential to exhibit stress cracks above 250F (122C).1.3 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provi

6、ded for information onlyand are not considered standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bilit

7、y of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2C165 Test Method for Measuring Compressive Properties ofThermal InsulationsC168 Terminology Relating to Thermal InsulationC177 Test Method for Steady-State Heat Flux Measure-ments and Thermal Transmission Properties

8、by Means ofthe Guarded-Hot-Plate ApparatusC203 Test Methods for Breaking Load and Flexural Proper-ties of Block-Type Thermal InsulationC240 Test Methods of Testing Cellular Glass InsulationBlockC302 Test Method for Density and Dimensions of Pre-formed Pipe-Covering-Type Thermal InsulationC303 Test M

9、ethod for Dimensions and Density of Pre-formed Block and BoardType Thermal InsulationC335/C335M Test Method for Steady-State Heat TransferProperties of Pipe InsulationC390 Practice for Sampling and Acceptance of ThermalInsulation LotsC411 Test Method for Hot-Surface Performance of High-Temperature T

10、hermal InsulationC450 Practice for Fabrication of Thermal Insulating FittingCovers for NPS Piping, and Vessel LaggingC518 Test Method for Steady-State Thermal TransmissionProperties by Means of the Heat Flow Meter ApparatusC585 Practice for Inner and Outer Diameters of ThermalInsulation for Nominal

11、Sizes of Pipe and TubingC692 Test Method for Evaluating the Influence of ThermalInsulations on External Stress Corrosion Cracking Ten-dency of Austenitic Stainless SteelC795 Specification for Thermal Insulation for Use in Con-tact with Austenitic Stainless SteelC871 Test Methods for Chemical Analysi

12、s of Thermal Insu-lation Materials for Leachable Chloride, Fluoride, Silicate,and Sodium IonsC1045 Practice for Calculating Thermal Transmission Prop-erties Under Steady-State ConditionsC1058/C1058M Practice for Selecting Temperatures forEvaluating and Reporting Thermal Properties of ThermalInsulati

13、onC1114 Test Method for Steady-State Thermal TransmissionProperties by Means of the Thin-Heater ApparatusC1617 Practice for Quantitative Accelerated LaboratoryEvaluation of Extraction Solutions Containing IonsLeached from Thermal Insulation on Aqueous Corrosionof MetalsC1639 Specification for Fabric

14、ation Of Cellular Glass PipeAnd Tubing Insulation1This specification is under the jurisdiction of ASTM Committee C16 onThermal Insulation and is the direct responsibility of Subcommittee C16.20 onHomogeneous Inorganic Thermal Insulations.Current edition approved May 1, 2015. Published June 2015. Ori

15、ginallyapproved in 1965 to replace C381 58 and C343 56. Last previous editionapproved in 2014 as C552 14. DOI: 10.1520/C0552-15.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume informatio

16、n, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1D226/D226M Specification for Asphalt-Saturated OrganicFelt Used in Roofing and WaterproofingD312/D312M Specification fo

17、r Asphalt Used in RoofingE84 Test Method for Surface Burning Characteristics ofBuilding MaterialsE96/E96M Test Methods for Water Vapor Transmission ofMaterials2.2 ISO Documents:3ISO 3951 Sampling Procedure and Charts for Inspection byVariables for Percent DefectiveISO 8497 Determination of steady-st

18、ate thermal transmis-sion properties of thermal insulation for circular pipes3. Terminology3.1 For definitions used in this specification, see Terminol-ogy C168.3.2 Definitions of Terms Specific to This Standard:ies ofthermal insulation for circular3.2.1 boardfabricated sections of cellular glass ad

19、heredand together covered with a facing such as a laminated kraftpaper adhered to both faces.4. Classification44.1 Cellular glass insulation covered by this specificationshall be classified in the seven grades shown in Table 1. Gradesvary in compressive strength, density, thermal conductivity,and fl

20、exural strength. Cellular glass insulation is furnished inthe following types:4.1.1 Type IFlat block manufactured,4.1.2 Type IIPipe and tubing insulation fabricated fromType I,4.1.3 Type IIISpecial shapes fabricated from Type I,4.1.4 Type IVBoard fabricated from Type I,NOTE 1Types not listed here ma

21、y not be commercially available.These would be considered special order items.5. Ordering Information5.1 Purchase orders for cellular glass insulation furnished tothis specification shall include the following information:5.1.1 Type designation (see 4.1),5.1.2 Dimensions according to type (see Secti

22、on 9), and5.1.3 Jacketing when required.5.2 Any special requirements, such as, type, fabricationcombinations not listed in accordance with Section 4, nonstan-dard dimensions in accordance with Section 9, inspectionrequirements in accordance with Section 13, or certificationrequirements in accordance

23、 with Section 16 shall be agreedupon between the purchaser and the supplier and stated in thepurchase contract.6. Materials and Manufacture6.1 The block material shall consist of a glass compositionthat has been foamed or cellulated under molten conditions,annealed, and set to form a rigid noncombus

24、tible material withhermetically sealed cells. The material shall be trimmed intoblocks of standard dimensions that are rectangular or tapered.6.2 Special shapes and pipe covering shall be fabricatedfrom blocks in accordance with Practices C450, C585 andSpecification C1639.6.3 Board, tapered or flat,

25、 shall be fabricated from blocks.7. Physical Properties7.1 The cellular glass insulation shall conform to the physi-cal requirements in Table 1. Contact the manufacturer forspecific design recommendations for all material types.8. Qualification Requirements8.1 The following requirements are generall

26、y employed forthe purpose of initial material or product qualification for TypeI, Block Material:8.1.1 Compressive strength.8.1.2 Flexural strength.8.1.3 Water absorption.8.1.4 Water vapor permeability.8.1.5 Thermal conductivity.8.1.6 Hot-surface performance.8.1.7 Surface burning characteristics.8.2

27、 The following requirements are generally employed forqualification of Type II, pipe and tubing insulation:8.2.1 Thermal Conductivity.8.2.2 Type II, pipe and tubing insulation shall be fabricatedfrom material having met the qualification requirements ofGrade 6 Type I block.8.3 Type III and Type IV m

28、aterial shall be fabricated frommaterial having met the qualification requirements of Grade 6Type I block.9. Dimensions, Mass, and Permissible Variations9.1 Type I, Flat BlockBlocks shall be nominal rectangularsections. The dimensions shall be as agreed upon by thepurchaser and the supplier. Cellula

29、r glass thermal insulationblock is available in lengths up to 36 in. (914 mm), widths upto 18 in. (457mm), and thicknesses from 1.5 in. (38 mm) to 8in. (203 mm).9.2 Type II, Pipe and Tubing InsulationSee SpecificationC1639.9.3 Type III, Special ShapesDimensions of special shapesshall be as agreed up

30、on between the supplier and the purchaser.9.4 Type IV, BoardDimensions of board shall be agreedupon between the purchaser and the supplier. Cellular glassthermal insulation board is available in lengths up to 48 in.(1219 mm), widths up to 24 in. (610 mm), and thicknessesfrom 1.5 in. (38 mm) to 8 in.

31、 (203 mm).9.5 Dimensional Tolerances:9.5.1 For Types I and IV, the average measured length,width, and thickness tolerances shall be in accordance withthose listed in Table 2.9.5.2 For Type II, the dimensional tolerances are given inTable 3.3Available from American National Standards Institute (ANSI)

32、, 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.4Type and grade designations are in accordance with Form and Style for ASTMStandards, Part B, Section B8, March 2002.C552 152TABLE 1 Physical RequirementsA,BTYPE I BLOCKProperties Grade 6 Grade 8 Grade 10 Grade 12 Grade 14 Grade 16 G

33、rade 24Compressive strength, capped, min, psi (kPa)(Capped material in accordance with TestMethods C240)60 (414) 80 (552) 100 (689) 120 (827) 140 (965) 160 (1103) 240 (1655)Density, lb/ft3(kg/m3) 6.12 (98) 6.3 (102) 6.9 (110) 7.4 (119) 8.0 (128) 8.5 (136) 10.6 (170)MinimumCompressive resistance, unc

34、apped, min, psi(kPa) (Uncapped at 0.2-in. deformation)35 (242) N/ACN/ACN/ACN/ACN/ACN/ACFlexural strength, min, psi (kPa) 41 (283) 45 (310) 51(351) 56 (386) 63 (434) 69 (476) 91 (627)Water absorption, max, volume % 0.5 0.5 0.5 0.5 0.5 0.5 0.5Water vapor permeability, max, perin. orgrainsin. of thickn

35、ess/hft2in.Hg (ngPa1s1m1)0.005 (0.007) 0.005 (0.007)0.005(0.007)0.005 (0.007)0.005(0.007)0.005 (0.007) 0.005 (0.007)Hot-surface performance warpage, in. (mm),max 0.125 (3) 0.125 (3) 0.125 (3) 0.125 (3) 0.125 (3) 0.125 (3) 0.125 (3)Cracking per 12.8.1 pass pass pass pass pass pass passBehavior of mat

36、erials in a vertical tube furnace passed passed passed passed passed passed passedSurface burning characteristicsDFlame spread index, max 5 5 5 5 5 5 5Smoke developed index, max 0 0 0 0 0 0 0Mass Loss Corrosion Rate # DIE# DI # DI # DI # DI # DI # DIApparent Thermal ConductivityF,G: flat block,maxBt

37、u-in./hft2F (W/mK) at mean temperatureof:F (C)400 (204) 0.58 (0.084) 0.58 (0.084) 0.58 (0.084) 0.60 (0.086) 0.61 (0.087) 0.61 (0.088) 0.65 (0.094)300 (149) 0.48 (0.070) 0.50 (0.072) 0.51 (0.074) 0.51 (0.074) 0.52 (0.075) 0.52 (0.076) 0.57 (0.082)200 (93) 0.40 (0.058) 0.41 (0.058) 0.42 (0.061) 0.43 (

38、0.062) 0.44 (0.063) 0.45 (0.064) 0.49 (0.071)100(38) 0.33 (0.047) 0.34 (0.049) 0.35 (0.050) 0.36 (0.052) 0.37 (0.053) 0.38 (0.054) 0.42 (0.061)75 (24) 0.31 (0.045) 0.32 (0.046) 0.33 (0.048) 0.35 (0.050) 0.36 (0.051) 0.36 (0.052) 0.40 (0.058)50 (10) 0.29 (0.043) 0.31 (0.044) 0.32 (0.046) 0.33 (0.048)

39、 0.34 (0.049) 0.35 (0.050) 0.39 (0.056)0 (18) 0.27 (0.038) 0.28 (0.040) 0.29 (0.042) 0.30 (0.043) 0.31 (0.045) 0.32 (0.046) 0.36 (0.051)50 (46) 0.24 (0.034) 0.25 (0.036) 0.26 (0.037) 0.28 (0.040) 0.28 (0.040) 0.29 (0.042) 0.33 (0.050)100 (73) 0.21 (0.031) 0.23 (0.033) 0.24 (0.035) 0.25 (0.037) 0.26

40、(0.037) 0.27 (0.039) 0.31 (0.045)150 (101) 0.19 (0.027) 0.20 (0.029) 0.22 (0.032) 0.23 (0.034) 0.24 (0.035) 0.25 (0.036) 0.29 (0.042)200 (129) 0.17 (0.025) 0.18 (0.026) 0.20 (0.029) 0.21 (0.031) 0.22 (0.032) 0.23 (0.033) 0.27 (0.041)250 (157) 0.16 (0.023) 0.17 (0.025) 0.18 (0.026) 0.19 (0.029) 0.20

41、(0.029) 0.21 (0.031) 0.25 (0.036)TYPE II PIPE AND TUBINGApparent thermal conductivityF,H,IPipe insulation, max, Btuin./hft2F (W/mK)at mean temperature of:F (C)400 (204) 0.63 (0.091)300 (149) 0.52 (0.075)200 (93) 0.43 (0.062)100 (38) 0.35 (0.050)75 (24) 0.34 (0.049)50 (10) 0.32 (0.046)0 (-18) 0.29 (0

42、.042)-50 (-46) 0.26 (0.037)-100 (-73) 0.23 (0.033)-150 (-101) 0.21 (0.030)Hot-surface performance warpage, in. (mm),max0.125 (3)Cracking per 12.8.1 passAPhysical property requirements shown are for the materials in the as-manufactured condition. They do not necessarily represent the values of these

43、properties undercertain in-service conditions, depending on the type of installation and the ultimate temperature exposure.BTypes II, III, and IV are fabricated from Type 1, Grade 6 block.CN/A = Not Applicable.DFor Types II and III, smoke developed index and flame spread index will remain constant w

44、ith some fabrication techniques and will change with other fabricationtechniques. For applications requiring a flame spread index of 25 and a smoke developed index of 50, contact fabricator or manufacturer.EDI = deionized water.FThermal transmission properties of insulation will vary with temperatur

45、e, temperature gradient, thickness, and shape. Note the apparent thermal conductivity values inthe table are based on samples tested under conditions specified in 12.3 These are comparative values for establishing specification compliance. They do not necessarilyrepresent the installed performance f

46、or the insulation under use conditions differing substantially from the test conditions.GEvaluated at a small temperature difference in accordance with Practice C1058/C1058M.HEvaluated at a large temperature difference in accordance with Practice C1058/C1058M.ISingle layer or inner layer on a multil

47、ayer system piping insulation fabricated in half sections has the potential to exhibit stress cracks above 250F (122C). The thermalperformance in this range is characterized with cracks present.C552 1539.5.3 For Type III, dimensional tolerances shall be agreedupon between the purchaser and the suppl

48、ier.9.5.4 For Types I, II, and IV, special dimensional tolerancesshall be agreed upon between the purchaser and the supplier asstated in the purchase contract.10. Workmanship, Finish, and Appearance10.1 Since some requirements for this material are noteasily specified by numerical value, the insulat

49、ion shall haveno visible defects that will adversely affect its service qualities.11. Sampling11.1 The insulation shall be sampled for the purpose oftesting in accordance with Practice C390 or ISO 39515. Anyspecific provisions for sampling shall be agreed upon betweenthe purchaser and the supplier.12. Test Methods12.1 All cellular glass is produced initially in block form.When special shapes are required, cellular glass is fabricatedinto pipe, curved or segmental insulation, precision V-grooved(material specifically cut to

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1