ASTM C76-2014 Standard Specification for Reinforced Concrete Culvert Storm Drain and Sewer Pipe《钢筋混凝土制涵洞、雨水道和污水管标准规格》.pdf

上传人:eventdump275 文档编号:508258 上传时间:2018-12-01 格式:PDF 页数:11 大小:162.18KB
下载 相关 举报
ASTM C76-2014 Standard Specification for Reinforced Concrete Culvert Storm Drain and Sewer Pipe《钢筋混凝土制涵洞、雨水道和污水管标准规格》.pdf_第1页
第1页 / 共11页
ASTM C76-2014 Standard Specification for Reinforced Concrete Culvert Storm Drain and Sewer Pipe《钢筋混凝土制涵洞、雨水道和污水管标准规格》.pdf_第2页
第2页 / 共11页
ASTM C76-2014 Standard Specification for Reinforced Concrete Culvert Storm Drain and Sewer Pipe《钢筋混凝土制涵洞、雨水道和污水管标准规格》.pdf_第3页
第3页 / 共11页
ASTM C76-2014 Standard Specification for Reinforced Concrete Culvert Storm Drain and Sewer Pipe《钢筋混凝土制涵洞、雨水道和污水管标准规格》.pdf_第4页
第4页 / 共11页
ASTM C76-2014 Standard Specification for Reinforced Concrete Culvert Storm Drain and Sewer Pipe《钢筋混凝土制涵洞、雨水道和污水管标准规格》.pdf_第5页
第5页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: C76 14Standard Specification forReinforced Concrete Culvert, Storm Drain, and Sewer Pipe1This standard is issued under the fixed designation C76; the number immediately following the designation indicates the year of originaladoption or, in the case of revision, the year of last revisio

2、n. A number in parentheses indicates the year of last reapproval. A superscriptepsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. Scope1.1 This specification covers reinforced concret

3、e pipeintended to be used for the conveyance of sewage, industrialwastes, and storm water, and for the construction of culverts.1.2 This specification is the inch-pound companion toSpecification C76M; therefore, no SI equivalents are presentedin this specification. Reinforced concrete pipe that conf

4、orm tothe requirements of C76M, are acceptable under this Specifi-cation C76 unless prohibited by the Owner.NOTE 1This specification is a manufacturing and purchase specifica-tion only, and does not include requirements for bedding, backfill, or therelationship between field load condition and the s

5、trength classification ofpipe. However, experience has shown that the successful performance ofthis product depends upon the proper selection of the class of pipe, typeof bedding and backfill, and care that installation conforms to theconstruction specifications. The owner of the reinforced concrete

6、 pipespecified herein is cautioned that he must correlate the field requirementswith the class of pipe specified and provide inspection at the constructionsite.NOTE 2Attention is called to the specification for reinforced concreteD-load culvert, storm drain, and sewer pipe (Specification C655).2. Re

7、ferenced Documents2.1 ASTM Standards:2A36/A36M Specification for Carbon Structural SteelA615/A615M Specification for Deformed and Plain Carbon-Steel Bars for Concrete ReinforcementA706/A706M Specification for Low-Alloy Steel Deformedand Plain Bars for Concrete ReinforcementA1064/A1064M Specification

8、 for Carbon-Steel Wire andWelded Wire Reinforcement, Plain and Deformed, forConcreteC33 Specification for Concrete AggregatesC76M Specification for Reinforced Concrete Culvert, StormDrain, and Sewer Pipe (Metric)C150 Specification for Portland CementC260 Specification for Air-Entraining Admixtures f

9、or Con-creteC309 Specification for Liquid Membrane-Forming Com-pounds for Curing ConcreteC494/C494M Specification for Chemical Admixtures forConcreteC497 Test Methods for Concrete Pipe, Manhole Sections, orTileC595 Specification for Blended Hydraulic CementsC618 Specification for Coal Fly Ash and Ra

10、w or CalcinedNatural Pozzolan for Use in ConcreteC655 Specification for Reinforced Concrete D-LoadCulvert, Storm Drain, and Sewer PipeC822 Terminology Relating to Concrete Pipe and RelatedProductsC989 Specification for Slag Cement for Use in Concrete andMortarsC1017/C1017M Specification for Chemical

11、 Admixtures forUse in Producing Flowing ConcreteC1116 Specification for Fiber-Reinforced Concrete andShotcrete3. Terminology3.1 DefinitionsFor definitions of terms relating to con-crete pipe, see Terminology C822.4. Classification4.1 Pipe manufactured in accordance with this specificationshall be of

12、 five classes identified as Class I, Class II, Class III,Class IV, and Class V. The corresponding strength require-ments are prescribed in Tables 1-5.5. Basis of Acceptance5.1 Unless otherwise designated by the owner at the time of,or before placing an order, there are two separate and alterna-tive

13、bases of acceptance. Independent of the method ofacceptance, the pipe shall be designed to meet both the 0.01-in.crack and ultimate strength requirements specified in Tables1-5.5.1.1 Acceptance on the Basis of Plant Load-Bearing Tests,Material Tests, and Inspection of Manufactured Pipe for Visual1Th

14、is specification is under the jurisdiction of ASTM Committee C13 onConcrete Pipe and is the direct responsibility of Subcommittee C13.02 onReinforced Sewer and Culvert Pipe.Current edition approved Feb. 1, 2014. Published February 2014. Originallyapproved in 1930. Last previous edition approved in 2

15、013 as C76 13a. DOI:10.1520/C0076-14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM Internati

16、onal, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1Defects and ImperfectionsAcceptability of the pipe in alldiameters and classes produced in accordance with 7.1 or 7.2shall be determined by the results of the three-edge bearingtests as defined in 11.3.1; by su

17、ch material tests as are requiredin 6.2, 6.3, 6.5, and 6.6; by an absorption test of the concretefrom the wall of the pipe as required in 11.9; and by visualinspection of the finished pipe to determine its conformancewith the accepted design and its freedom from defects.5.1.2 Acceptance on the Basis

18、 of Material Tests and Inspec-tion of Manufactured Pipe for Defects and ImperfectionsAcceptability of the pipe in all diameters and classes producedin accordance with 7.1 or 7.2 shall be determined by the resultsof such material tests as are required in 6.2, 6.3, 6.5, and 6.6;by crushing tests on co

19、ncrete cores or cured concrete cylinders;by an absorption test of the concrete from the wall of the pipefor each mix design that is used on an order; and by inspectionof the finished pipe including amount and placement ofreinforcement to determine its conformance with the accepteddesign and its free

20、dom from defects.5.1.3 When agreed upon by the owner and manufacturer,any portion or any combination of the tests itemized in 5.1.1 or5.1.2 may form the basis of acceptance.5.2 Age for AcceptancePipe shall be considered ready foracceptance when it conforms to the requirements as indicatedby the spec

21、ified tests.6. Materials6.1 The aggregate shall be so sized, graded, proportioned,and mixed with such proportions of Portland cement, blendedhydraulic cement, or Portland cement and supplementarycementing materials, or admixtures, if used, or a combinationthereof, and water to produce a homogenous c

22、oncrete mixtureof such quality that the pipe will conform to the test and designrequirements of the specification. In no case, however, shall theproportion of Portland cement, blended hydraulic cement, or acombination of Portland cement and supplementary cementingmaterials be less than 470 lb/yd3.6.

23、2 Cementitious materials:6.2.1 CementCement shall conform to the requirements ofSpecification C150, or shall be portland blast-furnace slagcement, or slag modified portland cement, or portland-pozzolan cement conforming to the requirements of Specifica-tion C595, except that the pozzolan constituent

24、 in the Type IPportland-pozzolan cement shall be fly ash.TABLE 1 Design Requirements for Class I Reinforced Concrete PipeANOTE 1See Section 5 for basis of acceptance specified by the owner. The strength test requirements in pounds-force per linear foot of pipe underthe three-edge-bearing method shal

25、l be either the D-load (test load expressed in pounds-force per linear foot per foot of diameter) to produce a 0.01-in.crack, or the D-loads to produce the 0.01-in. crack and the ultimate load as specified below, multiplied by the internal diameter of the pipe in feet.D-load to produce a 0.01-in. cr

26、ack 800D-load to produce the ultimate load 1200InternalDesignatedDiameter,in.Reinforcement, in.2/linear ft of pipe wallWall A Wall BConcrete Strength, 4000 psi Concrete Strength, 4000 psiWallThickness,in.CircularReinforcementBEllipticalReinforcementCWallThickness,in.CircularReinforcementBEllipticalR

27、einforcementCInnerCageOuterCageInnerCageOuterCage60 5 0.24 0.15 0.27 6 0.21 0.12 0.2366 512 0.30 0.18 0.33 612 0.24 0.15 0.2772 6 0.35 0.21 0.39 7 0.29 0.17 0.3278 612 0.40 0.24 0.44 712 0.32 0.19 0.3684 7 0.45 0.27 0.50 8 0.36 0.21 0.4190 712 0.49 0.29 0.54 812 0.41 0.24 0.4596 8 0.54 0.32 0.60 9 0

28、.45 0.27 0.51Concrete Strength, 5000 psi102 812 0.63 0.38 Inner CircularPlus Elliptical0.240.38912 0.54 0.32 Inner CircularPlus Elliptical0.210.32108 9 0.68 0.41 Inner CircularPlus Elliptical0.270.4110 0.60 0.36 Inner CircularPlus Elliptical0.240.36114A. . . .A. . . .120A. . . .A. . . .126A. . . .A.

29、 . . .132A. . . .A. . . .138A. . . .A. . . .144A. . . .A. . . .AFor modified or special designs see 7.2 or with the permission of the owner utilize the provisions of Specification C655. Steel areas may be interpolated between thoseshown for variations in diameter, loading, or wall thickness. Pipe ov

30、er 96 in. in diameter shall have two circular cages or an inner circular plus one elliptical cage.BAs an alternative to designs requiring both inner and outer circular cages the reinforcement may be positioned and proportioned in either of the following manners:An inner circular cage plus an ellipti

31、cal cage such that the area of the elliptical cage shall not be less than that specified for the outer cage in the table and the total areaof the inner circular cage plus the elliptical cage shall not be less than that specified for the inner cage in the table,An inner and outer cage plus quadrant m

32、ats in accordance with Fig. 1,orAn inner and outer cage plus an elliptical cage in accordance with Fig. 2.CElliptical and quadrant steel must be held in place by means of holding rods, chairs, or other positive means throughout the entire casting operation.C761426.2.2 Ground Granulated Blast-Furnace

33、 Slag (GGBFS)GGBFS shall conform to the requirements of Grade 100 or 120of Specification C989.6.2.3 Fly AshFly ash shall conform to the requirements ofClass F or Class C of Specification C618.6.2.4 Allowable Combinations of Cementitious MaterialsThe combination of cementitious materials used in the

34、concreteshall be one of the following:6.2.4.1 Portland cement only,6.2.4.2 Portland blast furnace slag cement only,6.2.4.3 Portland pozzolan cement only,6.2.4.4 A combination of portland cement and groundgranulated blast-furnace slag,6.2.4.5 A combination of portland cement and fly ash, or6.2.4.6 A

35、combination of portland cement, ground granu-lated blast-furnace slag, and fly ash.6.2.4.7 A combination of portland pozzolan cement and flyash.TABLE 2 Design Requirements for Class II Reinforced Concrete PipeANOTE 1See Section 5 for basis of acceptance specified by the owner. The strength test requ

36、irements in pounds-force per linear foot of pipe underthe three-edge-bearing method shall be either the D-load (test load expressed in pounds-force per linear foot per foot of diameter) to produce a 0.01-in.crack, or the D-loads to produce the 0.01-in. crack and the ultimate load as specified below,

37、 multiplied by the internal diameter of the pipe in feet.D-load to produce a 0.01-in. crack 1000D-load to produce the ultimate load 1500InternalDesig-natedDiameter,in.Reinforcement, in.2/linear ft of pipe wallWall A Wall B Wall CConcrete Strength, 4000 psi Concrete Strength, 4000 psi Concrete Streng

38、th, 4000 psiWallThick-ness,in.CircularReinforcementBEllipticalReinforcementCWallThick-ness,in.CircularReinforcementBEllipticalReinforcementCWallThick-ness,in.CircularReinforcementCEllipticalReinforcementDInnerCageOuterCageInnerCageOuterCageInnerCageOuterCage12 134 0.07B. . 2 0.07B. . 234 0.07B. .15

39、178 0.07B. . 214 0.07B. . 3 0.07B. .18 2 0.07B. . . 0.07B212 0.07B. . . 0.07B314 0.07B. . . 0.07B21 214 0.12 . . . 0.10 234 0.07B. . . 0.07B312 0.07B. . . 0.07B24 212 0.12 . . . 0.11 3 0.07B. . . 0.07B334 0.07B. . . 0.07B27 258 0.15 . . . 0.12 314 0.12 . . . 0.11 4 0.07B. . . 0.07B30 234 0.15 . . .

40、0.14 312 0.14 . . . 0.12 414 0.07B. . . 0.07B33 278 0.16 . . . 0.15 334 0.15 . . . 0.12 412 0.07B. . . 0.07B36 3 0.14 0.08 0.15 4E0.12 0.07 0.12 434E0.07 0.07 0.0842 312 0.16 0.10 0.18 412 0.15 0.09 0.17 514 0.10 0.07 0.1148 4 0.21 0.12 0.23 5 0.18 0.11 0.20 534 0.14 0.08 0.1554 412 0.24 0.15 0.27 5

41、12 0.21 0.12 0.24 614 0.17 0.10 0.1960 5 0.30 0.18 0.33 6 0.24 0.15 0.27 634 0.21 0.12 0.2466 512 0.35 0.21 0.39 612 0.31 0.19 0.34 714 0.24 0.15 0.2772 6 0.41 0.24 0.45 7 0.35 0.21 0.39 734 0.30 0.18 0.3378 612 0.45 0.27 0.51 712 0.40 0.24 0.44 814 0.35 0.21 0.3984 7 0.51 0.31 0.57 8 0.45 0.27 0.51

42、 834 0.41 0.24 0.4590 712 0.57 0.34 0.63 812 0.51 0.31 0.57 914 0.48 0.29 0.5396 8 0.62 0.36 0.69 9 0.57 0.34 0.63 934 0.55 0.33 0.60Concrete Strength, 5000 psi102 812 0.76 0.45 InnerCircular0.30 912 0.68 0.41 InnerCircular0.27 1014 0.62 0.36 InnerCircular0.24Plus El-liptical0.45 Plus El-liptical0.4

43、1 Plus El-liptical0.36108 9 0.85 0.51 InnerCircular0.34 10 0.76 0.45 InnerCircular0.30 1034 0.70 0.42 InnerCircular0.27Plus El-liptical0.51 Plus El-liptical0.45 Plus El-liptical0.42114A. . . .A. . . .A. . . .120A. . . .A. . . .A. . . .126A. . . .A. . . .A. . . .132A. . . .A. . . .A. . . .138A. . . .

44、A. . . .A. . . .144A. . . .A. . . .A. . . .AFor modified or special designs see 7.2 or with the permission of the owner utilize the provisions of Specification C655. Steel areas may be interpolated between thoseshown for variations in diameter, loading, or wall thickness. Pipe over 96 in. in diamete

45、r shall have two circular cages or an inner circular plus one elliptical cage.BFor these classes and sizes, the minimum practical steel reinforcement is specified. The specified ultimate strength of non-reinforced pipe is greater than the minimumspecified strength for the equivalent diameters.CAs an

46、 alternative to designs requiring both inner and outer circular cages the reinforcement may be positioned and proportioned in either of the following manners:An inner circular cage plus an elliptical cage such that the area of the elliptical cage shall not be less than that specified for the outer c

47、age in the table and the total areaof the inner circular cage plus the elliptical cage shall not be less than that specified for the inner cage in the table,An inner and outer cage plus quadrant mats in accordance with Fig. 1,orAn inner and outer cage plus an elliptical cage in accordance with Fig.

48、2.DElliptical and quadrant steel must be held in place by means of holding rods, chairs, or other positive means throughout the entire casting operation.EAs an alternative, single cage reinforcement may be used. The reinforcement area in square in. per linear foot shall be 0.20 for wall B and 0.16 f

49、or wall C.C761436.3 AggregatesAggregates shall conform to SpecificationC33 except that the requirement for gradation shall not apply.6.4 Admixtures and BlendsThe following admixtures andblends are allowable:6.4.1 Air-entraining admixture conforming to SpecificationC260;6.4.2 Chemical admixture conforming to SpecificationC494/C494M;TABLE 3 Design Requirements for Class III Reinforced Concrete PipeANOTE 1See Section 5 for basis of acceptance specified by the owner. The strength test requirements in pounds-force per lin

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1