ASTM D613-2017a Standard Test Method for Cetane Number of Diesel Fuel Oil《柴油燃料油十六烷值的标准试验方法》.pdf

上传人:赵齐羽 文档编号:511971 上传时间:2018-12-01 格式:PDF 页数:18 大小:419.62KB
下载 相关 举报
ASTM D613-2017a Standard Test Method for Cetane Number of Diesel Fuel Oil《柴油燃料油十六烷值的标准试验方法》.pdf_第1页
第1页 / 共18页
ASTM D613-2017a Standard Test Method for Cetane Number of Diesel Fuel Oil《柴油燃料油十六烷值的标准试验方法》.pdf_第2页
第2页 / 共18页
ASTM D613-2017a Standard Test Method for Cetane Number of Diesel Fuel Oil《柴油燃料油十六烷值的标准试验方法》.pdf_第3页
第3页 / 共18页
ASTM D613-2017a Standard Test Method for Cetane Number of Diesel Fuel Oil《柴油燃料油十六烷值的标准试验方法》.pdf_第4页
第4页 / 共18页
ASTM D613-2017a Standard Test Method for Cetane Number of Diesel Fuel Oil《柴油燃料油十六烷值的标准试验方法》.pdf_第5页
第5页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: D613 17aDesignation: 41/2000Standard Test Method forCetane Number of Diesel Fuel Oil1This standard is issued under the fixed designation D613; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision.

2、A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. Scope*1.1 This test method covers the determination of t

3、he ratingof diesel fuel oil in terms of an arbitrary scale of cetanenumbers using a standard single cylinder, four-stroke cycle,variable compression ratio, indirect injected diesel engine.1.2 The cetane number scale covers the range from zero (0)to 100, but typical testing is in the range of 30 to 6

4、5 cetanenumber.1.3 The values for operating conditions are stated in SI unitsand are to be regarded as the standard. The values given inparentheses are the historical inch-pound units for informationonly. In addition, the engine measurements continue to be ininch-pound units because of the extensive

5、 and expensivetooling that has been created for these units.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-b

6、ility of regulatory limitations prior to use. For more specificwarning statements, see Annex A1.1.5 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International St

7、andards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2D975 Specification for Diesel Fuel OilsD1193 Specification for Reagent WaterD2500 Test Method for Cloud Point of Petroleum Productsand Liq

8、uid FuelsD3703 Test Method for Hydroperoxide Number of AviationTurbine Fuels, Gasoline and Diesel FuelsD4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4175 Terminology Relating to Petroleum Products, LiquidFuels, and LubricantsD4177 Practice for Automatic Sampling of Petroleum

9、andPetroleum ProductsD6299 Practice for Applying Statistical Quality Assuranceand Control Charting Techniques to Evaluate AnalyticalMeasurement System PerformanceE456 Terminology Relating to Quality and StatisticsE542 Practice for Calibration of Laboratory VolumetricApparatusE832 Specification for L

10、aboratory Filter Papers3. Terminology3.1 Definitions:3.1.1 accepted reference value (ARV), na value that servesas an agreed-upon reference for comparison, and which isderived as: (1) a theoretical or established value, based onscientific principles, or (2) an assigned or certified value, basedon exp

11、erimental work of some national or internationalorganization, or (3) a consensus or certified value, based oncollaborative experimental work under the auspices of ascientific or engineering group. E4563.1.1.1 DiscussionIn the context of this test method,accepted reference value is understood to appl

12、y to the cetane1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility ofSubcommittee D02.01 on Combustion Characteristics.Current edition approved May 1, 2017. Published May 2017. Originallyapproved in 194

13、1. Last previous edition approved in 2017 as D613 17. DOI:10.1520/D0613-17A.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onth

14、e ASTM website.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on stand

15、ardization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1number of specific reference materials determined empiricallyunder reproducibility condit

16、ions by the National ExchangeGroup or another recognized exchange testing organization.3.1.2 cetane number (CN), na measure of the ignitionperformance of a diesel fuel oil obtained by comparing it toreference fuels in a standardized engine test. D41753.1.2.1 DiscussionIn the context of this test met

17、hod,ignition performance is understood to mean the ignition delayof the fuel as determined in a standard test engine undercontrolled conditions of fuel flow rate, injection timing andcompression ratio.3.1.3 compression ratio (CR), nthe ratio of the volume ofthe combustion chamber including the preco

18、mbustion chamberwith the piston at bottom dead center to the comparable volumewith the piston at top dead center.3.1.4 ignition delay, nthat period of time, expressed indegrees of crank angle rotation, between the start of fuelinjection and the start of combustion.3.1.5 injection timing (injection a

19、dvance), nthat time inthe combustion cycle, measured in degrees of crank angle, atwhich fuel injection into the combustion chamber is initiated.3.1.6 quality control (QC) sample, nfor use in qualityassurance programs to determine and monitor the precision andstability of a measurement system, a stab

20、le and homogeneousmaterial having physical or chemical properties, or both,similar to those of typical samples tested by the analyticalmeasurement system. The material is properly stored to ensuresample integrity, and is available in sufficient quantity forrepeated, long term testing. D62993.1.7 rep

21、eatability conditions, nconditions where inde-pendent test results are obtained with the same method onidentical test items in the same laboratory by the same operatorusing the same equipment within short intervals of time. E4563.1.7.1 DiscussionIn the context of this test method, ashort time interv

22、al between two ratings on a sample fuel isunderstood to be not less than the time to obtain at least onerating on another sample fuel between them but not so long asto permit any significant change in the sample fuel, testequipment, or environment.3.1.8 reproducibility conditions, nconditions where

23、testresults are obtained with the same method on identical testitems in different laboratories with different operators usingdifferent equipment. E4563.2 Definitions of Terms Specific to This Standard:3.2.1 cetane meter, nthe electronic apparatus which dis-plays injection advance and ignition delay

24、derived from inputpulses of multiple transducers (pickups).3.2.1.1 DiscussionIn the context of this test method, threegenerations of apparatus have been approved for use as cetanemeters. These are (year of introduction is parenthesis) the MarkII Ignition Delay Meter (1974), the Dual Digital Cetane M

25、eter(1990), and the XCP Cetane Panel (2014).3.2.2 check fuels, nfor quality control testing, a diesel fueloil of selected characteristics having a cetane number acceptedreference value determined in accordance with Practice D6299requirements for check standards derived from interlaboratoryexchange p

26、rograms.3.2.2.1 DiscussionWhen evaluating the interlaboratorydata to establish the ARV, outlier identification and rejectioncriteria shall be applied at the 5 % significance level prior tocomputing the average result.3.2.3 combustion pickup, npressure transducer exposed tocylinder pressure to indica

27、te the start of combustion.3.2.4 handwheel reading, nan arbitrary numerical value,related to compression ratio, obtained from a micrometer scalethat indicates the position of the variable compression plug inthe precombustion chamber of the engine.3.2.5 injector opening pressure, nthe fuel pressure t

28、hatovercomes the resistance of the spring which normally holdsthe nozzle pintle closed, and thus forces the pintle to lift andrelease an injection spray from the nozzle.3.2.6 injector pickup, ntransducer to detect motion of theinjector pintle, thereby indicating the beginning of injection.3.2.7 prim

29、ary reference fuels (PRF), nn-cetane, heptam-ethyl nonane (HMN) and volumetrically proportioned mixturesof these materials which now define the cetane number scale;the cetane number accepted reference value (CNARV) for anymixture of n-cetane and HMN is given by the relationship:CNARV5 volume-% n-cet

30、ane10.15 volume- % HMN! (1)3.2.7.1 DiscussionIn the context of this test method, thearbitrary cetane number scale was originally defined as thevolume percent of n-cetane in a blend with alpha-methylnaphthalene (AMN) where n-cetane had an assignedvalue of 100 and AMN an assigned value of zero (0). A

31、changefrom alpha-methylnaphthalene to heptamethylnonane as thelow cetane ingredient was made in 1962 to utilize a material ofbetter storage stability and availability. Heptamethylnonanewas determined to have a cetane number accepted referencevalue (CNARV) of 15 based on engine testing by the ASTMDie

32、sel National Exchange Group.33.2.7.2 DiscussionIn the context of this test method, theDiesel National Exchange Group of Subcommittee D02.014iscomposed of petroleum industry, governmental, and indepen-dent laboratories. It conducts regular monthly exchange sampleanalyses to generate precision data fo

33、r this engine test standardand determines the CNARVof reference materials used by alllaboratories.3.2.8 reference pickups, ntransducers or optical sensorsmounted over the flywheel of the engine, triggered by aflywheel indicator, used to establish a top-dead-center (tdc)reference and a time base for

34、calibration of the cetane meter.3.2.9 secondary reference fuels (SRF), nvolumetricallyproportioned blends of two selected, numbered, and paired3Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D02-1092. ContactASTM CustomerService

35、 at serviceastm.org.4Bylaws governing ASTM Subcommittee D02.01 on Combustion Characteris-tics are available from the subcommittee or from ASTM International.D613 17a2hydrocarbon mixtures designated T Fuel (high cetane) and UFuel (low cetane) that have been rated by the ASTM DieselNational Exchange G

36、roup using primary reference fuels todetermine a cetane number accepted reference value for eachindividually and for various combinations of the two.3.3 Abbreviations:3.3.1 ABDCafter bottom dead center3.3.2 AMNalpha-methylnaphthalene3.3.3 ARVaccepted reference value3.3.4 ATDCafter top dead center3.3

37、.5 BBDCbefore bottom dead center3.3.6 BTDCbefore top dead center3.3.7 CNcetane number3.3.8 CRcompression ratio3.3.9 HMNheptamethyl nonane3.3.10 HRFhigh reference fuel3.3.11 HWhand wheel3.3.12 IATintake air temperature3.3.13 LRFlow reference fuel3.3.14 NEGNational Exchange Group3.3.15 PRFprimary refe

38、rence fuels3.3.16 SRFsecondary reference fuels3.3.17 TDCtop dead center3.3.18 UVultraviolet4. Summary of Test Method4.1 The cetane number of a diesel fuel oil is determined bycomparing its combustion characteristics in a test engine withthose for blends of reference fuels of known cetane numberunder

39、 standard operating conditions. This is accomplishedusing the bracketing handwheel procedure which varies thecompression ratio (handwheel reading) for the sample and eachof two bracketing reference fuels to obtain a specific ignitiondelay permitting interpolation of cetane number in terms ofhandwhee

40、l reading.5. Significance and Use5.1 The cetane number provides a measure of the ignitioncharacteristics of diesel fuel oil in compression ignition en-gines.5.2 This test method is used by engine manufacturers,petroleum refiners and marketers, and in commerce as aprimary specification measurement re

41、lated to matching of fuelsand engines.5.3 Cetane number is determined at constant speed in aprecombustion chamber type compression ignition test engine.The relationship of test engine performance to full scale,variable speed, variable load engines is not completely under-stood.5.4 This test method m

42、ay be used for unconventional fuelssuch as synthetics, vegetable oils, and the like. However, therelationship to the performance of such materials in full scaleengines is not completely understood.6. Interferences6.1 (WarningAvoid exposure of sample fuels and refer-ence fuels to sunlight or fluoresc

43、ent lamp UV emissions tominimize induced chemical reactions that can affect cetanenumber ratings.)56.1.1 Exposure of these fuels to UV wavelengths shorterthan 550 nm for a short period of time may significantly affectcetane number ratings.6.2 Certain gases and fumes present in the area where theceta

44、ne test engine is located may have a measurable effect onthe cetane number test result.6.3 This test method is not suitable for rating diesel fuel oilswith fluid properties that interfere with unimpeded gravity flowof fuel to the fuel pump or delivery through the injector nozzle.7. Apparatus7.1 Engi

45、ne Equipment6,7This test method uses a singlecylinder engine which consists of a standard crankcase withfuel pump assembly, a cylinder with separate head assembly ofthe precombustion type, thermal syphon recirculating jacketcoolant system, multiple fuel tank system with selectorvalving, injector ass

46、embly with specific injector nozzle, elec-trical controls, and a suitable exhaust pipe. The engine is beltconnected to a special electric power-absorption motor whichacts as a motor driver to start the engine and as a means toabsorb power at constant speed when combustion is occurring(engine firing)

47、. See Fig. 1 and Table 1.7.2 Instrumentation6,7This test method uses electronicapparatus to measure injection and ignition delay timing aswell as conventional thermometry, gages and general purposemeters.7.2.1 Cetane MeterUse of an approved cetane meter ismandatory; only the XCP Cetane Panel or the

48、Dual DigitalCetane Meter or the Mark II Ignition Delay Meter shall be usedfor this test method.7.3 Reference Fuel Dispensing EquipmentThis testmethod requires repeated blending of two secondary referencefuel materials in volumetric proportions on an as-needed basis.Measurement shall be performed acc

49、urately because ratingerror is proportional to blending error.7.3.1 Volumetric Blending of Reference FuelsVolumetricblending has historically been employed to prepare the re-quired blends of reference fuels. For volumetric blending, a setof two burets or accurate volumetric ware shall be used and thedesired batch quantity shall be collected in an appropriatecontainer and thoroughly mixed before being introduced to theengine fuel system.5Supporting data have been filed at ASTM International Headquarters and maybe obtained by requestin

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1