ASTM D4580-2003(2007) Standard Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding《用测声法测量混凝土桥面分层剥离性的标准实施规范》.pdf

上传人:priceawful190 文档编号:517425 上传时间:2018-12-02 格式:PDF 页数:4 大小:63.21KB
下载 相关 举报
ASTM D4580-2003(2007) Standard Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding《用测声法测量混凝土桥面分层剥离性的标准实施规范》.pdf_第1页
第1页 / 共4页
ASTM D4580-2003(2007) Standard Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding《用测声法测量混凝土桥面分层剥离性的标准实施规范》.pdf_第2页
第2页 / 共4页
ASTM D4580-2003(2007) Standard Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding《用测声法测量混凝土桥面分层剥离性的标准实施规范》.pdf_第3页
第3页 / 共4页
ASTM D4580-2003(2007) Standard Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding《用测声法测量混凝土桥面分层剥离性的标准实施规范》.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、Designation: D 4580 03 (Reapproved 2007)Standard Practice forMeasuring Delaminations in Concrete Bridge Decks bySounding1This standard is issued under the fixed designation D 4580; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, th

2、e year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers procedures for surveying concretebridge decks by sounding to determine delaminations i

3、n theconcrete. It is not intended that the procedures described hereinare to be used on bridge decks that have been overlaid withbituminous mixtures. The procedures may be used on bridgedecks that have been overlaid with portland cement concretemixtures; however, areas indicated to be delaminated ma

4、y havea lack of bond between the overlay and the underlying bridgedeck (Note 1).NOTE 1The influence of variable field conditions such as traffic noise,vibration, moisture content of the concrete, and the like, are not com-pletely known and additional investigation may be needed. It is generallyagree

5、d that the practice should not be used on frozen concrete.1.2 The following three procedures are covered in thispractice:1.2.1 Procedure A, Electro-Mechanical Sounding DeviceThis procedure uses an electric powered tapping device, sonicreceiver, and recorder mounted on a cart. The cart is pushedacros

6、s the bridge deck and delaminations are recorded on therecorder.1.2.2 Procedure B, Chain DragThis procedure consists ofdragging a chain over the bridge deck surface. The detection ofdelaminations is accomplished by the operator noting dull orhollow sounds. Tapping the bridge deck surface with a stee

7、l rodor hammer may be substituted for the chain drag.1.2.3 Procedure C, Rotary Percussion2This procedureconsists of rolling a dual-wheel, multi-toothed apparatus at-tached to an extension pole over the bridge deck surface. Thepercussive force caused by the tapping wheels will create eithera dull or

8、hollow sound indicating any delamination.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of whoever uses this standard to consult andestablish appropriate safety and health practices and deter-mine the applicability of

9、 regulatory limitations prior to use.2. Significance and Use2.1 This practice may be used in conjunction with othermethods in determining the general condition of concretebridge decks.2.2 This practice may be used in determining specific areasof delamination requiring repair.PROCEDURE AELECTRO-MECHA

10、NICALSOUNDING DEVICE3. Summary of Procedure3.1 Longitudinal lines at a predetermined spacing are estab-lished on the bridge deck.3.2 After calibration, the sounding device is pushed alongthe established lines. Electrically powered tapping wheels emitvibrations into the deck that are sensed by sonic

11、receivers.Areas of delamination are indicated by deflections on a stripchart recorder.3.3 All portions on the strip chart indicating delaminationsare plotted on a scaled map of the bridge deck. An outline ismade showing the areas of delamination.4. ApparatusNOTE 2The apparatus described here has bee

12、n found suitable and isthe most common type commercially available. Other apparatuses that donot exactly conform to these requirements such as sounding device,tapping rate, or sonic receivers may also be accepted.4.1 Electro-Mechanical Sounding DeviceA small, three-wheeled cart upon which is mounted

13、 a 12-V battery, twotapping wheels, two sonic receivers, a two-channel-strip re-corder, and associated connectors and cables.4.1.1 Tapping Wheels Two rigid-steel-tapping wheels ca-pable of tapping the bridge deck surface at the rate of 33times/s. The tapping wheels shall be located approximately 6in

14、. (152 mm) apart.1This practice is under the jurisdiction of ASTM Committee D04 on Road andPaving Materials and is the direct responsibility of Subcommittee D04.32 onBridges and Structures.Current edition approved Dec. 1, 2007. Published January 2008. Originallyapproved in 1986. Last previous editio

15、n approved in 2003 as D 4580 03.2The rotary sound detecting device for concrete and procedure are patentpending in the US Patent and Trademark Office by Philip K. Clark Company, Inc.,503 Central Drive, Suite 102, Virginia Beach, VA 23454. Interested parties areinvited to submit information regarding

16、 the identification of an alternative(s) to thispatent pending item to ASTM International Headquarters, 100 Barr Harbor Drive,PO Box C700, West Conshohocken, PA 19428-2959. Your comments will receivecareful consideration at a meeting of the responsible technical subcommittee,1which you may attend.1C

17、opyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4.1.2 Sonic Receivers Two sonic receivers consisting ofoil-filled soft tires, inside each of which a receiving transduceris mounted in nonrotating proximity to the concrete surface.The tr

18、ansducers shall be piezo-electric hydrophones that arecoupled to the concrete surface through the soft tires and the oilwithin the wheels. Each receiving wheel shall be locatedapproximately 3 in. (76 mm) outside of and parallel to itscorresponding tapping wheel.4.1.3 Strip Chart RecorderA two-channe

19、l-strip chart re-corder shall be capable of receiving the signals from the sonicreceivers. The electronics unit shall accept only those portionsof the signal that occur during the first 3 ms after theoccurrence of a tap and further limit the recorder to respondonly to those frequency components of t

20、he signal that lies inthe range of 300 to 1200 Hz. The processed signals shall berectified and integrated to produce a visual record on therespective channels of the record chart. The chart shall bedriven in proportion to the distance traveled so that the lengthof the record represents a predetermin

21、ed length of travel. Therecording pen on one channel shall be capable of acting as anevent marker.4.1.4 Cables and ConnectorsThere shall be sufficientcables and connectors for connection of the left-tapping wheelsonic-receiver system to the left channel of the strip chartrecorder and the right-tappi

22、ng wheel sonic-receiver system tothe right channel of the strip chart recorder.4.2 Measuring Tape, Markers, StringlineA measuringtape, markers, and stringline shall be provided for establishinglines on the bridge deck that will serve to keep the soundingdevice positioned properly while making the su

23、rvey.4.3 CalibratorA solid aluminum bar capable of checkingthe operational system of the sounding device.5. Calibration5.1 Place the device on the calibrator bar in the on positionwith the chart drive operating. This will establish the electricalzero line.5.2 With the calibration switch in the calib

24、rate position, turnon the power, transmitter, and chart drive switches. Each of therecorder pens should trace a rather erratic line approximatelyhalf way between the maximum pen movement and theelectrical zero line. This line may vary one or two majordivisions due to normal variations in the respons

25、e of the systemto the aluminum bar. If the response line does not fall asdescribed, then each channel shall be adjusted with theappropriate calibration adjustment control.6. Bridge Deck Layout6.1 Any accumulation of debris on the deck must beremoved.6.2 Beginning at a curb face, mark each end of the

26、 bridge atthe interval chosen for making the survey.NOTE 3Various spacing intervals such as 15 in. (38.1 cm), 18 in. (45.7cm), and 3 ft (91.4 cm) have been used. The closer spacings arerecommended for an in-depth analysis of the bridge deck. The widerspacing intervals are suitable for general-condit

27、ion surveys of bridgedecks.7. Test Procedure7.1 Stretch the stringline between corresponding marks oneach end of the bridge.7.2 With the switch in the operate position and the powerand transmitter switches on, push the sounding device at anormal walking speed over the bridge deck. The device mustbe

28、centered over the stringline. Continue in this manner untilthe entire deck has been surveyed.7.3 Mark the ends of the bridge, expansion devices, and soforth, by activating the event marker.8. Data Interpretation and Plotting8.1 Construct a scaled map of the deck surface.8.2 Plot the limits of all po

29、rtions of each trace indicating adelamination. A delamination is considered a trace deflectionof four or more minor chart divisions above the normalbackground response.8.3 Connect the limits of these plots and outline the indi-vidual delaminated areas.8.4 Determine the total area contained in the in

30、dividualdelaminated areas.8.5 Divide the total delaminated area by the total bridgedeck area and multiply times 100 to yield the percent of deckarea delaminated.PROCEDURE BCHAIN DRAG9. Summary of Procedure9.1 A grid system is laid out on the bridge deck.9.2 Chains are dragged over the deck surface.

31、Delaminatedareas are those where a dull or hollow sound from the chaindragging operation is apparent.9.3 Delaminated areas are outlined on the deck surface. Amap is prepared indicating the location of delaminations withrespect to the grid lines.10. Apparatus10.1 Chains, Steel Rods, or HammersAccepta

32、ble sizesand configurations of chains, steel rods, or hammers are thosethat produce a clear ringing sound when dragged or tappedover nondelaminated concrete and a dull or hollow sound overdelaminated concrete. A common chain drag configurationconsists of four or five segments of 1-in. (25-mm) link c

33、hain of14-in. (6-mm) diameter steel approximately 18 in. (45.7 cm)long, attached to a 2-ft (61-cm) piece of aluminum or coppertube to which a 2- to 3-ft (61- to 91.4-cm) piece of tubing, forthe handle, is attached to the midpoint, forming a T. Steel rods58 in. by 4 ft (16 mm by 121.9 cm), or larger,

34、 have been foundto produce satisfactory results.NOTE 4Heavier chains have generally been shown to produce a moredefinitive sound under heavy traffic conditions.10.2 Measuring Tape, Markers, and StringlineA measur-ing tape, markers, and stringline shall be provided for estab-lishing a grid system on

35、the bridge deck. Markers such as spraypaint or lumber crayon shall be used to outline delaminatedareas on the deck surface.D 4580 03 (2007)211. Bridge Deck Layout11.1 Any accumulation of debris on the deck must beremoved.11.2 Construct a grid system on the deck surface with alumber crayon so that de

36、laminated areas marked on the deckcan be plotted easily on a map by referencing the areas to thegrid.12. Test Procedure12.1 Survey the entire bridge deck by dragging the chains ortapping with the steel rod or hammer over the entire surface.On nondelaminated concrete, a clear ringing sound will behea

37、rd. A dull or hollow sound is emitted when delaminatedconcrete is encountered.12.2 Mark the areas of delamination on the deck surfacewith the spray paint or lumber crayon.13. Plotting13.1 Construct a scaled map of the deck surface.13.2 By referencing to the established grid system on thedeck, plot t

38、he areas of delamination on the map.13.3 Determine the total area contained in the individualdelaminated areas.13.4 Divide the total delaminated area by the total bridgedeck area and multiply by 100 to yield the percent of deck areadelaminated.PROCEDURE CROTARY PERCUSSION14. Summary of Procedure14.1

39、 A grid system is laid out on the bridge deck, verticalstructural support or the underside of the bridge structure.14.2 A rotary percussive device is rolled over the bridgedeck, vertical structural member or the underside of the bridgedeck. Delaminated areas are those areas where a dull or hollowsou

40、nd is created from the rotary percussion units striking thesurface.14.3 Delaminated areas are outlined on the bridge deckssurface, vertical structural surface or on the underside of thebridge deck surface. A map (or field schematic) is preparedindicating the locations of the delaminations with respe

41、ct to thegrid lines or with respect to their proximity to permanentstructural elements.15. Apparatus15.1 Rotary Percussion Sounding DeviceA “T” shapeddevice with two rotary percussion units, which spin whenrolled over a concrete surface. The device is either hand-held orattached to an extension pole

42、 to reach the overhead surfaces ofstructural members or the underside of the bridge deck surface.As the rotary percussion sounding device is rolled over thesurface, the two percussion units strike the surface withsufficient force to create either a clear ringing sound whenpassing over solid concrete

43、 or a dull or hollow sound whenpassing over delaminated concrete.15.2 Rotary Percussion UnitsTwo hardedened steel, 15-point percussion units are fit onto an axle and are capable ofbeing rolled over the surface to be tested to sufficiently strikethe concrete surface to generate the hollow sound indic

44、ative ofdelaminated concrete.15.3 Extension PoleThe rotary percussion device is at-tached to a telescoping extension pole to reach the surface to betested, either the top slab deck or an overhead structuralmember.15.4 Measuring Wheel, Markers, and String LineA mea-suring wheel adapted to fit a teles

45、coping extension pole.Lumber crayons, spray paint markers, and string line shall beused to establish a grid system so that the delaminated areascan be accurately recorded.16. Bridge Deck Layout16.1 Any accumulation of debris on the deck must beremoved.16.2 Construct a grid system on the deck surface

46、, verticalstructure member, or the underside of the bridge deck withchalk line, lumber crayon, or by the test areas proximity tofixed structural components. Plot the areas on the field sheet.17. Test Procedure17.1 Survey the entire deck surface or overhead structuralmember by rolling the rotary perc

47、ussion device over the entiresurface. On non-delaminated concrete, a clear ringing soundwill be heard. A dull or hollow sound will indicate delaminatedconcrete.17.2 Mark the areas of delamination on the deck surfacewith spray paint or lumber crayon. Mark the areas of delami-nation on the vertical st

48、ructureal members or the underside ofthe deck structure with an up-spraying spray paint device orlumber crayon.18. Plotting18.1 Construct a scale map of the surface to be tested.18.2 By referencing the established grid system on the deckor overhead surface, plot the areas of delamination on the map.

49、18.3 Determine the total delaminated area within the gridsystem.18.4 Divide the total delaminated area by the total bridgedeck area (or overhead structural element) and multiply by 100to yield the percent of deck area or overhead structural elementfound to be delaminated.19. Report19.1 The report shall include the following information:19.1.1 Bridge location and description,19.1.2 Survey method used,19.1.3 Date of test,19.1.4 Spacing of interval if Procedure A is used,19.1.5 Percent of deck delaminated, and19.1.6 Remarks.20. Precision and Bias20.1 The nature

展开阅读全文
相关资源
猜你喜欢
  • BS ISO 8005-2006 en_1993  Carbonaceous materials used in the production of aluminium - Green and calcined coke - Determination of ash content《铝生产用碳素材料.生焦炭和煅烧焦炭.灰分含量的测定》.pdf BS ISO 8005-2006 en_1993 Carbonaceous materials used in the production of aluminium - Green and calcined coke - Determination of ash content《铝生产用碳素材料.生焦炭和煅烧焦炭.灰分含量的测定》.pdf
  • BS ISO 8007-3-2005 en_4794  Carbonaceous materials used in the production of aluminium - Sampling plans and sampling from individual units - Sidewall blocks《铝生产用碳素材料.单个材料的取样方案和取样.侧壁块》.pdf BS ISO 8007-3-2005 en_4794 Carbonaceous materials used in the production of aluminium - Sampling plans and sampling from individual units - Sidewall blocks《铝生产用碳素材料.单个材料的取样方案和取样.侧壁块》.pdf
  • BS ISO 8008-2006 en_3871  Aluminium oxide primarily used for the production of aluminium - Determination of specific surface area by nitrogen adsorption《主要用于铝生产的氧化铝.用氮吸收法测定表面吸附指数》.pdf BS ISO 8008-2006 en_3871 Aluminium oxide primarily used for the production of aluminium - Determination of specific surface area by nitrogen adsorption《主要用于铝生产的氧化铝.用氮吸收法测定表面吸附指数》.pdf
  • BS ISO 8009-2014 en_7112  Mechanical contraceptives Reusable natural and silicone rubber contraceptive diaphragms Requirements and tests《机械性避孕法 可重复使用的天然和硅胶避孕器具 要求和试验》.pdf BS ISO 8009-2014 en_7112 Mechanical contraceptives Reusable natural and silicone rubber contraceptive diaphragms Requirements and tests《机械性避孕法 可重复使用的天然和硅胶避孕器具 要求和试验》.pdf
  • BS ISO 8013-2012 en_1116  Rubber vulcanized Determination of creep in compression or shear《硫化橡胶 压缩或剪切蠕变的测定》.pdf BS ISO 8013-2012 en_1116 Rubber vulcanized Determination of creep in compression or shear《硫化橡胶 压缩或剪切蠕变的测定》.pdf
  • BS ISO 8018-2007 en_4981  Tools for moulding - Guide bushes headed and locating guide bushes headed《模制工具.有头的导套和有头的定位导套》.pdf BS ISO 8018-2007 en_4981 Tools for moulding - Guide bushes headed and locating guide bushes headed《模制工具.有头的导套和有头的定位导套》.pdf
  • BS ISO 8020-2002 en_2690  Tools for pressing - Punches with cylindrical head and straight or reduced shank《压制加工用工具.带圆头和直的或缩小柄杆的冲头》.pdf BS ISO 8020-2002 en_2690 Tools for pressing - Punches with cylindrical head and straight or reduced shank《压制加工用工具.带圆头和直的或缩小柄杆的冲头》.pdf
  • BS ISO 8036-2015 en_9407  Microscopes Immersion liquids for light microscopy《显微镜.光学显微学的浸液》.pdf BS ISO 8036-2015 en_9407 Microscopes Immersion liquids for light microscopy《显微镜.光学显微学的浸液》.pdf
  • BS ISO 8038-2013 en_5299  Microscopes Screw threads for objectives and related nosepieces《显微镜.物镜及物镜座螺纹》.pdf BS ISO 8038-2013 en_5299 Microscopes Screw threads for objectives and related nosepieces《显微镜.物镜及物镜座螺纹》.pdf
  • 相关搜索

    当前位置:首页 > 标准规范 > 国际标准 > ASTM

    copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
    备案/许可证编号:苏ICP备17064731号-1