ASTM E1508-1998(2008) Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy《用能量分散能谱学作定量分析的标准指南》.pdf

上传人:wealthynice100 文档编号:528830 上传时间:2018-12-05 格式:PDF 页数:8 大小:105.29KB
下载 相关 举报
ASTM E1508-1998(2008) Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy《用能量分散能谱学作定量分析的标准指南》.pdf_第1页
第1页 / 共8页
ASTM E1508-1998(2008) Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy《用能量分散能谱学作定量分析的标准指南》.pdf_第2页
第2页 / 共8页
ASTM E1508-1998(2008) Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy《用能量分散能谱学作定量分析的标准指南》.pdf_第3页
第3页 / 共8页
ASTM E1508-1998(2008) Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy《用能量分散能谱学作定量分析的标准指南》.pdf_第4页
第4页 / 共8页
ASTM E1508-1998(2008) Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy《用能量分散能谱学作定量分析的标准指南》.pdf_第5页
第5页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Designation: E 1508 98 (Reapproved 2008)Standard Guide forQuantitative Analysis by Energy-Dispersive Spectroscopy1This standard is issued under the fixed designation E 1508; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year

2、of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide is intended to assist those using energy-dispersive spectroscopy (EDS) for quantitative analysis ofmater

3、ials with a scanning electron microscope (SEM) orelectron probe microanalyzer (EPMA). It is not intended tosubstitute for a formal course of instruction, but rather toprovide a guide to the capabilities and limitations of thetechnique and to its use. For a more detailed treatment of thesubject, see

4、Goldstein, et al.2This guide does not cover EDSwith a transmission electron microscope (TEM).1.2 UnitsThe values stated in SI units are to be regardedas standard. No other units of measurement are included in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if an

5、y, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3E3 Guide for Preparation of Metallographic Specime

6、nsE7 Terminology Relating to MetallographyE 673 Terminology Relating to Surface AnalysisE 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method3. Terminology3.1 DefinitionsFor definitions of terms used in this guide,see Terminologies E 7 and E 673.3.2 Defini

7、tions of Terms Specific to This Standard:3.2.1 accelerating voltagethe high voltage between thecathode and the anode in the electron gun of an electron beaminstrument, such as an SEM or EPMA.3.2.2 beam currentthe current of the electron beam mea-sured with a Faraday cup positioned near the specimen.

8、3.2.3 Bremsstrahlungbackground X rays produced byinelastic scattering (loss of energy) of the primary electronbeam in the specimen. It covers a range of energies up to theenergy of the electron beam.3.2.4 critical excitation voltagethe minimum voltage re-quired to ionize an atom by ejecting an elect

9、ron from a specificelectron shell.3.2.5 dead timethe time during which the system will notprocess incoming X rays (real time less live time).3.2.6 k-ratiothe ratio of background-subtracted X-rayintensity in the unknown specimen to that of the standard.3.2.7 live timethe time that the system is avail

10、able todetect incoming X rays.3.2.8 overvoltagethe ratio of accelerating voltage to thecritical excitation voltage for a particular X-ray line.3.2.9 shaping timea measure of the time it takes theamplifier to integrate the incoming charge; it depends on thetime constant of the circuitry.3.2.10 spectr

11、umthe energy range of electromagnetic ra-diation produced by the method and, when graphically dis-played, is the relationship of X-ray counts detected to X-rayenergy.4. Summary of Practice4.1 As high-energy electrons produced with an SEM orEPMA interact with the atoms within the top few micrometreso

12、f a specimen surface, X rays are generated with an energycharacteristic of the atom that produced them. The intensity ofsuch X rays is proportional to the mass fraction of that elementin the specimen. In energy-dispersive spectroscopy, X raysfrom the specimen are detected by a solid-state spectromet

13、erthat converts them to electrical pulses proportional to thecharacteristic X-ray energies. If the X-ray intensity of each1This guide is under the jurisdiction ofASTM Committee E04 on Metallographyand is the direct responsibility of Subcommittee E04.11 on X-Ray and ElectronMetallography.Current edit

14、ion approved June 1, 2008. Published September 2008. Originallyapproved in 1993. Last previous edition approved in 2003 as E 1508 98(2003).2Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Romig,A. D., Jr., Lyman,C. D., Fiori, C., and Lifshin, E., Scanning Electron Microscopy and X-rayMicro

15、analysis, 3rd ed., Plenum Press, New York, 2003.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright AS

16、TM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.element is compared to that of a standard of known composi-tion and suitably corrected for the effects of other elementspresent, then the mass fraction of each element can becalculated.5. Significan

17、ce and Use5.1 This guide covers procedures for quantifying the el-emental composition of phases in a microstructure. It includesboth methods that use standards as well as standardlessmethods, and it discusses the precision and accuracy that onecan expect from the technique. The guide applies to EDS

18、witha solid-state X-ray detector used on an SEM or EPMA.5.2 EDS is a suitable technique for routine quantitativeanalysis of elements that are 1) heavier than or equal to sodiumin atomic weight, 2) present in tenths of a percent or greater byweight, and 3) occupying a few cubic micrometres, or more,

19、ofthe specimen. Elements of lower atomic number than sodiumcan be analyzed with either ultra-thin-window or windowlessspectrometers, generally with less precision than is possible forheavier elements. Trace elements, defined as 100 %. For quantitative analysisusing standards, the beam current (not s

20、pecimen current) mustbe the same for both the specimen and the standards or onemust be normalized to the other.8.2.6 The geometric configuration of the sample and detec-tor, shown schematically in Fig. 1, also affects the analysis. Thenumber of X-ray photons that reach the detector is a functionof t

21、he solid angle and take-off angle, including the effect ofspecimen and detector tilt. The count rate incident on an X-raydetector is directly proportional to the size of the solid angledefined as follows for a detector normal to the line of sight tothe specimen:V5A/r2(2)where:V = solid angle in ster

22、adians,A = active area of the detector crystal; for example, 30mm2, andr = sample-to-detector distance, mm.The larger the active area of the detector, the more countswill be collected, but at the expense of spectral resolution.Most detectors have a movable slide and can be brought closerto the sampl

23、e if a higher count rate at a given beam current isneeded. The take-off angle is defined as the angle between thesurface of the sample and a line to the X-ray detector. If thesample is not tilted, the take-off angle is defined as follows:c5arctan W 2 V!/S (3)where:c = take-off angle,W = working dist

24、ance,V = vertical distance, andS = spectrometer distance.Working distance is measured in the microscope; its accu-racy depends on the method used to measure it and thespecimen position. Vertical distance is the distance from thebottom of the pole piece of the final lens to the centerline of thedetec

25、tor; it usually can be measured within the microscopewith a ruler. Spectrometer distance is the horizontal distancefrom the spectrometer to the beam; it is measured using thescale provided by the manufacturer on the spectrometer slide.All distances must be in the same units. The take-off angleshould

26、 be as high as possible to minimize absorption of X rayswithin the specimen and maximize the accuracy of quantitativeanalysis. If the specimen is tilted such that the beam is notperpendicular to the specimen surface, an effective take-offangle is used. There are several expressions in use by com-mer

27、cial manufacturers to calculate this, and all produce similar4Johnson, G. G., Jr., and White, E. W., X-Ray Emission Wavelengths and KeVTables for Nondiffractive Analysis, ASTM Data Series DS 46, ASTM, Philadelphia,1970.5Andersen, C. A., and Hasler, M. F., X-Ray Optics and Microanalysis, 4th Intl.Con

28、g. on X-Ray Optics and Microanalysis, Hermann, Paris, 1966, p.310.FIG. 1 Schematic Diagram of Electron Microscope SystemE 1508 98 (2008)3results if the tilt angle is not extreme. When analysis isperformed on a tilted specimen, the azimuthal angle betweenthe line from the analysis point to the EDS de

29、tector and the lineperpendicular to the stage tilt axis must be known. If standardsare used, they must be collected under the identical geometricalconditions as the unknowns.8.3 Spectral Artifacts:8.3.1 There are a number of artifacts possible with EDS, andthese are discussed by Fiori, et al.6Most o

30、f them are related todetector electronics and are rarely seen in a properly function-ing system. However, two artifacts that are commonly seen arepulse pileup peaks and silicon escape peaks. Pileup peaksoccur when several X-ray photons reach the detector at thesame time, and the pulse processing ele

31、ctronics erroneouslyrecord the sum of their energies rather than each one individu-ally. Lowering the beam current to lower the count rate usuallyeliminates the problem. Alternatively, the amplifier shapingtime can be decreased; this action will allow pulses to beprocessed faster, but at the expense

32、 of degraded spectralresolution.8.3.2 A silicon escape peak occurs when an ionized atom ofsilicon in the detector generates an X ray. If that X ray escapesfrom the detector, its energy that would ordinarily have beenmeasured is lost. The result is a peak at 1.74 keV (Si Ka) belowthe proper peak. Thi

33、s artifact is greatest at about 2 keV, near thePKaor Zr Lapeaks. The artifact cannot occur at energiesbelow the absorption edge of the Si K line, and it becomesnegligible at higher energies such as the Cu Kaline.9. Quantification9.1 Background Subtraction and Peak Deconvolution:9.1.1 Before the prop

34、ortionality between X-ray intensityand elemental concentration can be calculated, several stepsare required to obtain the intensity ratio (k-ratio) betweenunknown and standard. Or, if the standardless technique isused, then a pure net intensity is required.Aspectrum of X raysgenerated by electrons i

35、nteracting with the specimen containsa background consisting of continuum X rays, often calledBremsstrahlung. Observing the high-energy cutoff of the con-tinuum, as noted in 8.2.1, gives the most accurate determina-tion of the beam voltage, and this is the value that should beused for quantitative a

36、nalysis. If the voltage measured in thismanner is much lower than the voltage setting, it may be anindication that the specimen is charging. The background in thespectrum is not linear and simple interpolation is inadequate.Two approaches to this problem commonly used in commercialsystems are backgr

37、ound modeling and digital filtering. Thebackground models are based on known physics plus a suitablecorrection for the real world. This method lets the user passjudgment on the quality of the model by comparing the modelwith the actual spectrum. The digital filter method treats thebackground as a lo

38、w frequency component of the spectrum andmathematically sets it to zero. This method is not based on anymodel and, therefore, is more general. It is also useful for thelight element region of the spectrum where the models werenever intended to be used; however, it does not take intoaccount absorptio

39、n edges. Some software also allows theoperator to fit his own background.9.1.2 The other step that must be accomplished before anintensity ratio can be measured is peak deconvolution. EDSdetectors do not resolve all peaks. For example, the S Ka,MoLa, and Pb Malines are all within about 50 eV of each

40、 otherand therefore are severely overlapped. Even though one cannotsee the individual components of a peak envelope in aspectrum, there are computer methods of deconvolution. Twomethods in common use are 1) the method of overlap factorsand 2) the method of multiple least squares. Both methodswork we

41、ll, and they are usually combined with one of thebackground subtraction methods in the manufacturers soft-ware. One should consult the manufacturers instructions fortheir use.9.1.3 Although in most cases these computer methodshandle spectra well, the operator should be aware of conditionsthat are di

42、fficult. For example, trace element analysis issensitive to background subtraction because the computer islooking for a small peak above the continuum.Accordingly thespectrum must be collected long enough to provide enoughstatistics to discern small peaks. In like manner, deconvolutionroutines work

43、well in most cases, but not when the overlappedlines arise from elements present in widely different concen-trations. For example, if one element constitutes 90 % of thespecimen and the other element 10 %, precision will be greatlydegraded. In this situation use of a different analytical line maybe

44、possible, or if not, a technique with higher spectralresolution such as wavelength dispersive spectrometry isindicated.9.1.4 Once the background is subtracted and the peaks arestripped of interferences, one can calculate their ratio to thoseof similarly background-subtracted, deconvoluted standardsp

45、ectra. The unknowns and standards must have been collected1) under the same geometrical configuration, 2) at the sameaccelerating voltage, 3) at the same count rate per current unit,and 4) with the same processing algorithm.9.1.5 Even standardless analysis requires background sub-traction and peak d

46、econvolution, but the intensity is calculatedfrom pure intensity curves and the ratio of peak integrals in theunknown spectrum. Standardless analyses always total 100 %,or some other value specified by the analyst. In normalizing thetotal concentrations to 100 %, important information is lost. Atrue

47、 mass total, as in analysis against standards, providesinformation about the quality of the analysis. It calls attentionto problems such as elements not specified for analysis oranalysis of more than one phase under the beam. Analysestotaling exactly 100 % should always be viewed with skepti-cism, w

48、hether they be standardless or normalized standardsanalyses. Whichever method is used, all elements present mustbe specified even if some need not be analyzed. This is becausea correction is necessary to account for the effect of otherelements (the matrix) present in the specimen.9.2 Matrix Correcti

49、ons:6Fiori, C. E., Newbury, D. E., and Myklebust, R. L., “Artifacts Observed inEnergy Dispersive X-ray Spectrometry in Electron Beam InstrumentsA Caution-ary Guide,” NIST Special Publication 604, Proceedings of the Workshop on EnergyDispersive Spectrometry, National Institute of Standards and Technology, Gaithers-burg, Maryland, 1981.E04E 1508 98 (2008)49.2.1 The k-ratio of an element is a starting estimate of thatelements concentration. There are, however, effects of atomicnumber, absorption, and fluorescence between the unknownsand the standards. The atomic numb

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > ASTM

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1