BS EN 16603-70-11-2015 Space engineering Space segment operability《航天工程 空间段的可操作性》.pdf

上传人:deputyduring120 文档编号:574059 上传时间:2018-12-13 格式:PDF 页数:80 大小:1.91MB
下载 相关 举报
BS EN 16603-70-11-2015 Space engineering Space segment operability《航天工程 空间段的可操作性》.pdf_第1页
第1页 / 共80页
BS EN 16603-70-11-2015 Space engineering Space segment operability《航天工程 空间段的可操作性》.pdf_第2页
第2页 / 共80页
BS EN 16603-70-11-2015 Space engineering Space segment operability《航天工程 空间段的可操作性》.pdf_第3页
第3页 / 共80页
BS EN 16603-70-11-2015 Space engineering Space segment operability《航天工程 空间段的可操作性》.pdf_第4页
第4页 / 共80页
BS EN 16603-70-11-2015 Space engineering Space segment operability《航天工程 空间段的可操作性》.pdf_第5页
第5页 / 共80页
点击查看更多>>
资源描述

1、BSI Standards PublicationBS EN 16603-70-11:2015Space engineering Spacesegment operabilityBS EN 16603-70-11:2015 BRITISH STANDARDNational forewordThis British Standard is the UK implementation ofEN 16603-70-11:2015.The UK participation in its preparation was entrusted to Technical Committee ACE/68, S

2、pace systems and operations.A list of organizations represented on this committee can be obtained on request to its secretary.This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. The British Standards Institution

3、2015.Published by BSI Standards Limited 2015ISBN 978 0 580 86760 6 ICS 49.140 Compliance with a British Standard cannot confer immunity from legal obligations.This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 January 2015.Amendments/corrigen

4、da issued since publicationDate T e x t a f f e c t e dEUROPEAN STANDARD NORME EUROPENNE EUROPISCHE NORM EN 16603-70-11 January 2015 ICS 49.140 English version Space engineering - Space segment operability Ingnierie spatiale - Oprabilit du segment spatial Raumfahrttechnik - Raumsegment-Bedienbarkeit

5、 This European Standard was approved by CEN on 24 November 2014. CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibli

6、ographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under

7、 the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croa

8、tia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and U

9、nited Kingdom. CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels 2015 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for CENELEC Members. Ref. No. EN 16603-70-11:2015 EBS EN 16603-70-11:2015Table of contents Foreword

10、 5 Introduction 5 1 Scope . 7 2 Normative references . 8 3 Terms, definitions and abbreviated terms 9 3.1 Terms from other standards 9 3.2 Terms specific to the present standard . 9 3.3 Abbreviated terms. 14 3.4 Conventions 14 4 General requirements. 15 4.1 Introduction . 15 4.2 Observability . 15 4

11、.3 Commandability 15 4.4 Compatibility . 16 4.5 Safety and fault tolerance . 16 4.6 Flexibility . 17 4.7 Testability . 18 4.8 Deactivation 18 5 Detailed requirements 19 5.1 Introduction . 19 5.2 Mission-level . 19 5.2.1 Security . 19 5.2.2 Control functions . 20 5.2.3 Uplink and downlink 20 5.3 Tele

12、metry . 21 5.3.1 Telemetry design 21 5.3.2 Diagnostic mode . 23 5.4 Datation and synchronization 24 5.5 Telecommanding 25 EN 16603-70-11:2015 (E)BS EN 16603-70-11:20155.5.1 Telecommand design 25 5.5.2 Critical telecommands . 27 5.5.3 Telecommand transmission and distribution 27 5.5.4 Telecommand ver

13、ification . 28 5.6 Configuration management . 29 5.6.1 Modes . 29 5.6.2 On-board configuration handling . 30 5.7 On-board autonomy 31 5.7.1 Introduction . 31 5.7.2 General autonomy. 31 5.7.3 Autonomy for execution of nominal mission operations . 32 5.7.4 Autonomy for mission data management 33 5.7.5

14、 On-board fault management . 33 5.8 Requirements specific to the telemetry and telecommand packet utilization standard . 38 5.8.1 Application process and service design . 38 5.8.2 Statistical data reporting 39 5.8.3 Memory management . 40 5.8.4 Function management 41 5.8.5 On-board operations schedu

15、ling . 41 5.8.6 On-board monitoring . 42 5.8.7 Large data transfer 44 5.8.8 Telemetry generation and forwarding 44 5.8.9 On-board storage and retrieval . 44 5.8.10 On-board traffic management . 46 5.8.11 On-board operations procedures . 46 5.8.12 Event-to-action coupling 47 5.9 Equipment- and subsys

16、tem-specific . 47 5.9.1 On-board processors and software . 47 5.9.2 Power supply and consumption. 49 5.9.3 Telemetry, tracking and command (TT facilitate the tasks of preparation for, and execution and evaluation of, space segment check-out and mission operations activities; facilitate the tasks of

17、space segment suppliers when preparing a proposal in response to a request for proposal (RFP). EN 16603-70-11:2015 (E)BS EN 16603-70-11:20151 Scope This Standard contains provisions for the design of on-board functions for unmanned space segments in order to ensure that the space segment can be oper

18、ated in-flight in any nominal or predefined contingency situation. The requirements in this Standard are grouped in two clauses, containing general operability requirements and detailed operability requirements, respectively. The general operability requirements can be applied to all missions, whils

19、t the detailed operability requirements are only applicable if the corresponding on-board function is implemented. The operability of the space segment to meet mission-specific requirements is outside the scope of this standard. To support the users of this Standard in tailoring the requirements to

20、the needs of their particular mission, Annex B contains a table that indicates, for each requirement, the potential impact of its omission. This standard may be tailored for the specific characteristics and constraints of a space project, in conformance with ECSS-S-ST-00. EN 16603-70-11:2015 (E)BS E

21、N 16603-70-11:20152 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS Standard. For dated references, subsequent amendments to, or revisions of any of these publications, do not apply. However, parties

22、to agreements based on this ECSS Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references the latest edition of the publication referred to applies. EN reference Reference in text Title EN 16601-00-

23、01 ECSS-S-ST-00-01 ECSS system Glossary of terms EN 16603-50-03 ECSS-E-ST-50-03 Space engineering Space data links Telemetry transfer frame protocol EN 16603-50-04 ECSS-E-ST-50-04 Space engineering Space data links Telecommand protocols, synchronization and channel coding EN 16603-70-41 ECSS-E-ST-70

24、-41 Space engineering Telemetry and telecommand packet utilization EN 16603-70-11:2015 (E)BS EN 16603-70-11:20153 Terms, definitions and abbreviated terms 3.1 Terms from other standards For the purpose of this Standard, the terms and definitions from ECSS-S-ST-00-01 apply. 3.2 Terms specific to the

25、present standard 3.2.1 Categories of operability 3.2.1.1 commandability provision of adequate control functions to configure the on-board systems for the execution of nominal mission operations, failure detection, identification, isolation, diagnosis and recovery, and maintenance operations 3.2.1.2

26、compatibility ability of two or more systems or components to perform their specified functions without interference 3.2.1.3 deactivation capability to undertake planned operations to terminate the mission at the end of its useful lifetime NOTE Terminate can mean to deactivate the spacecraft, to de-

27、orbit it, or both. 3.2.1.4 flexibility capability to configure and make optimum use of existing on-board functions, the capacity of the space-Earth communications links, and any redundancy built into the design in order to meet the reliability targets 3.2.1.5 observability availability to the ground

28、 segment and to on-board functions of information on the status, configuration and performance of the space segment 3.2.1.6 testability capability to test the on-board functions of the space segment including those that are “off-line” NOTE “Off-line” means functions that do not form part of the curr

29、ent operational configuration. EN 16603-70-11:2015 (E)BS EN 16603-70-11:20153.2.2 Terms pertaining to critical functions 3.2.2.1 commandable vital function vital function that is commandable by high-priority commands without the involvement of on-board software 3.2.2.2 high priority command pulse co

30、mmand that is routed directly to hardware by means of an on-board command pulse distribution unit (CPDU) 3.2.2.3 high priority telemetry telemetry that enables a reliable determination of the current status of vital on-board equipment and which is available under all circumstances NOTE High priority

31、 telemetry can be managed by a mechanism that is independent of the one used for standard housekeeping telemetry and normally without any microprocessor involvement. 3.2.2.4 locally-critical function function that, when executed in the wrong context (e.g. at the wrong time), can cause temporary or p

32、ermanent degradation of the associated local functions, but does not compromise higher level functionality 3.2.2.5 mission-critical function function that, when executed in the wrong context (e.g. at the wrong time), or wrongly executed, can cause permanent mission degradation 3.2.2.6 permanent degr

33、adation of space segment function situation where a given on-board function cannot be achieved either on the nominal or on any redundant chain for the remainder of the mission lifetime 3.2.2.7 permanent mission degradation situation where space segment functions or performances affecting mission pro

34、duct generation or primary mission objectives cannot be achieved either on the nominal or on any redundant chain for the remainder of the mission lifetime 3.2.2.8 temporary degradation of space segment function situation where a given on-board function cannot be achieved either on the nominal or on

35、any redundant chain for a limited period of time 3.2.2.9 temporary mission degradation situation where space segment functions or performance affecting mission product generation or primary mission objectives cannot be achieved either on the nominal or on any redundant chain for a limited period of

36、time NOTE For example, a mission outage following transition to survival mode. 3.2.2.10 vital function function that is essential to mission success and that can cause permanent mission degradation if not executed when it should be, or wrongly executed, or executed in the wrong context EN 16603-70-1

37、1:2015 (E)BS EN 16603-70-11:20153.2.2.11 vital telecommand telecommand that activates a commandable vital function 3.2.3 Other terms 3.2.3.1 application process on-board entity capable of generating telemetry source data and receiving telecommand data 3.2.3.2 authorization right of an authenticated

38、entity to perform a function or access a data item or data stream 3.2.3.3 chain set of hardware or software units that operate together to achieve a given function NOTE For example, an attitude and orbit control subsystem (AOCS) processor and its software and a set of AOCS sensors and actuators toge

39、ther constitute an AOCS chain. 3.2.3.4 confidentiality property that information is not made available or disclosed to unauthorized individuals, entities or processes 3.2.3.5 control function mechanism to maintain a parameter or a set of parameters within specified limits NOTE A control function nor

40、mally consists of a set of measurements and responses (commands) related according to a function, algorithm, or set of rules. 3.2.3.6 data integrity property that the data has not been altered or destroyed in an unauthorized manner 3.2.3.7 data origin authentication corroboration that the source of

41、the data received is as claimed 3.2.3.8 datation attachment of time information to telemetry data NOTE This includes payload measurement data. 3.2.3.9 device telecommand telecommand that is routed to and executed by on-board hardware NOTE For example, a relay switching telecommand, a telecommand to

42、load an on-board register. 3.2.3.10 housekeeping telemetry telemetry provided for the purposes of monitoring the health and functioning of the space segment EN 16603-70-11:2015 (E)BS EN 16603-70-11:20153.2.3.11 loss of mission state where the ground segment can no longer control the space segment (e

43、.g. due to loss of contact), or where the space segment can no longer achieve the mission goals (e.g. due to anomalies) 3.2.3.12 memory on-board data storage area NOTE 1 This includes main memory and storage memory. NOTE 2 Examples of memory are disk, tape, and bubble-memory. 3.2.3.13 mode operation

44、al state of a spacecraft, subsystem or payload in which certain functions can be performed 3.2.3.14 mode transition transition between two operational modes 3.2.3.15 on-board autonomy capability of the space segment to manage nominal or contingency operations without ground segment intervention for

45、a given period of time 3.2.3.16 on-board monitoring on-board application of checking functions to a set of on-board parameters in conformance with predefined criteria NOTE Monitoring functions include limit-checking, expected-value-checking and delta-checking. 3.2.3.17 on-board operations procedure

46、monitoring and control procedure that is stored on-board and whose activation is under ground segment control 3.2.3.18 on-board operations schedule on-board facility for storing and releasing telecommands that were loaded in advance from the ground NOTE In its simplest form, the on-board operations

47、schedule stores time-tagged telecommands loaded from the ground and releases them to the destination application process when their on-board time is reached. 3.2.3.19 operability capability of the space segment to be operated by the ground segment during the complete mission lifetime, whilst optimiz

48、ing the use of resources and maximizing the quality, quantity, and availability (or timeliness of delivery) of mission products, without compromising space segment safety EN 16603-70-11:2015 (E)BS EN 16603-70-11:20153.2.3.20 operations activities undertaken by the ground and space segments in order

49、to ensure the timely provision of mission products or services, recover from on-board contingencies, carry out routine maintenance activities and manage on-board resources in order to maximize the provision of mission products or services and the mission lifetime 3.2.3.21 parameter lowest level of elementary data item on-board 3.2.3.22 parameter validity condition that defines whether the interpretation of a telemetry parameter is reliable and meaningful NOTE The angular output of a gyro only has a valid engineering meaning if the power to the gyro is “on”, while at o

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > BS

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1