KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf

上传人:postpastor181 文档编号:821496 上传时间:2019-02-11 格式:PDF 页数:18 大小:310.09KB
下载 相关 举报
KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf_第1页
第1页 / 共18页
KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf_第2页
第2页 / 共18页
KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf_第3页
第3页 / 共18页
KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf_第4页
第4页 / 共18页
KS X 0001-31-2009 Information technology-Vocabulary-Part 31:Artificial intelligence-Machine learning《信息处理术语 第31部分 人工智能 机械学习》.pdf_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、 KSKSKSKSKSKSKSK KSKSKS KSKSK KSKS KSK KS KS X 0001 31 31: KS X 0001 31:2009(MOD, ISO/IEC 2382 31: 1997) 2009 12 10 http:/www.kats.go.krKS X 0001 31:2009 : ( ) ( ) () ()SJ ( ) : (http:/www.standard.go.kr) : :1999 12 29 :2009 12 10 2009-0787 : : ( 02-509-7262) (http:/www.kats.go.kr). 10 5 , . KS X 00

2、01 31:2009 (MOD, ISO/IEC 2382 31: 1997) 31: Information technology Vocabulary Part 31: Artificial intelligence Machine learning 1997 1 ISO/IEC 2382 31, Information technology Vocabulary Part 31: Artificial intelligence Machine learning , . 1 . , . . 2 . . ( ) . KS X 0001 1: 2007, 1: ISO/IEC 2382 1:

3、1993, Information technology Vocabulary Part 1: Fundamental terms KS X 0001 28: 2007, 28: ISO/IEC 2382 28: 1995, Information technology Vocabulary Part 28: Artificial intelligenceBasic concepts and expert systems 3 3.1 . , . . , 3.5 3.8 . KS X 0001 31:2009 2 3.2 3.1 . . a) 1)b) ISO , 3 . c) d) e) f)

4、 “ ” g) “ ” , h) i) , , 3.3 KS X 0001(ISO/IEC 2382 .) . , “ ” 01 . , , KS X 0001 . , KS X 0001 . ISO/IEC 2382 KS X 0001 . 3.4 ISO/IEC 2382 . 3 , ISO/IEC 2382 . 3.5 ISO/IEC 2382 . KS X 0001 . 3.6 3.2 , . 1) KS X 0001 ISO/IEC 2382 . KS X 0001 31:2009 3 3.7 . . KS X 0001 . , . , . 3.8 . , . . 3.9 , . .

5、 . . 4 31 31.01 31.01.01 learning 31.01.02 machine learning automatic learning 31.01.03 self-learning 31.01.04 , . knowledge acquisition31.01.05 learning strategy KS X 0001 31:2009 4 31.01.06 . concept 31.01.07 . . , . concept learning 31.01.08 . conceptual clustering31.01.09 ( ) 1 . 2 taxonomy form

6、ation 31.01.10 machine discovery 31.01.11 , . , , , , , , , , , , . cognitive science cognitivism 31.02 31.02.01 . unlearning 31.02.02 concept description 31.02.03 . chunking 31.02.04 characteristic description 31.02.05 discriminant description KS X 0001 31:2009 5 31.02.06 structural description 31.

7、02.07 concept formation 31.02.08 “learned” “learnt” . partially learned concept 31.02.09 version space 31.02.10 example space instance space 31.02.11 description space 31.02.12 . concept generalization 31.02.13 , consistent generalization 31.02.14 constraint-based generalization 31.02.15 similarity-

8、based generalization 31.02.16 , . complete generalization 31.02.17 ( ) . concept specialization31.02.18 confusion matrix 31.02.19 concept validation 31.03 31.03.01 , causal analysis 31.03.02 . rote learning KS X 0001 31:2009 6 31.03.03 adaptive learning 31.03.04 heuristic learning 31.03.05 learning

9、by being toldlearning from instruction 31.03.06 advice taking 31.03.07 incremental learning 31.03.08 supervised learning 31.03.09 , . unsupervised learninglearning without a teacher 31.03.10 , learning by discoverylearning from observation 31.03.11 inductive learning learning by induction 31.03.12 .

10、 learning from examples example-based learning instance-based learning 31.03.13 , . positive example positive instance 31.03.14 , . negative example negative instance 31.03.15 , , . near-miss KS X 0001 31:2009 7 31.03.16 , . case-based learning 31.03.17 1 . 2 . deductive learning learning by deducti

11、on31.03.18 analytic learning explanation-based learning 31.03.19 , “ ” operationalization 31.03.20 . learning by analogy associative learning 31.03.21 / . credit/blame assignment 31.03.22 / reinforcement learning31.03.23 , , learning from solution paths 31.03.24 / . learning-apprentice strategy KS X

12、 0001 31:2009 8 31.03.25 , , , .learning while doing 31.03.26 , . “ ” , , . genetic learning KS X 0001 31:2009 9 ( ) 31.02.04 31.03.08 31.02.05 31.03.09 31.02.06 31.01.06 31.02.11 31.01.07 31.01.08 31.02.02 31.03.15 31.02.02 31.01.10 31.02.07 31.03.10 31.02.08 / 31.03.21 31.02.12 31.03.12 ( ) 31.02.

13、17 31.03.22 31.02.19 31.02.08 31.02.19 31.03.14 31.03.04 ( ) 31.01.09 31.02.09 31.02.03 31.02.10 31.03.01 31.02.11 31.03.18 31.01.11 31.03.10 31.02.05 31.02.10 31.02.06 31.03.12 31.01.08 31.03.13 31.03.11 31.03.14 31.03.13 31.03.18 31.01.02 / 31.03.21 31.01.10 31.02.14 31.02.15 31.03.02 31.03.16 31.

14、03.20 31.03.18 31.03.17 31.03.24 31.02.16 31.02.02 31.03.01 31.03.19 31.02.15 31.03.24 31.03.26 31.03.20 31.01.11 31.03.05 31.02.13 31.02.02 31.02.12 KS X 0001 31:2009 10 31.02.13 31.01.02 31.02.14 31.01.05 31.02.15 31.01.07 31.02.16 31.02.01 31.02.08 31.03.02 31.01.02 31.03.03 31.01.03 31.03.04 31.

15、03.19 31.03.05 31.03.03 31.03.05 31.01.05 31.03.07 ( ) 31.02.17 31.03.08 31.03.07 31.03.09 31.02.01 31.03.10 31.02.14 31.03.10 31.03.05 31.03.11 31.01.04 31.03.12 31.03.25 31.03.12 31.03.16 31.03.17 / 31.03.21 31.03.18 31.03.06 31.03.18 31.03.20 31.03.20 31.03.16 31.03.22 31.03.23 31.03.24 31.02.04

16、31.03.25 ( ) 31.02.17 31.03.26 31.03.23 31.02.18 ( ) 31.01.09 ( ) 31.01.09 31.02.07 31.02.18 31.01.01 31.01.04 31.01.02 KS X 0001 31:2009 11 ( ) A discriminant description 31.02.05acquisition knowledge acquisition 31.01.04 structural description 31.02.06adaptive adaptive learning 31.03.03 discovery

17、learning by discovery 31.03.10advice advice taking 31.03.06 machine discovery 31.01.10analogy learning by analogy 31.03.20 discriminant discriminant description 31.02.05analysis causal analysis 31.03.01 analytic analytic learning 31.03.18 E assignment credit/blame assignment 31.03.21 example example

18、 space 31.02.10associative associative learning 31.03.20 learning from examples 31.03.12automatic automatic learning 31.01.02 negative example 31.03.14positive example 31.03.13C case-based case-based learning 31.03.16example-based example-based learning 31.03.12causal causal analysis 31.03.01charact

19、eristic characteristic description 31.02.04explanation-based explanation-based learning 31.03.18chunking chunking 31.02.03 clustering conceptual clustering 31.01.08 F cognitive cognitive science 31.01.11 formation concept formation 31.02.07cognitivism cognitivism 31.01.11 taxonomy formation 31.01.09

20、complete complete generalization 31.02.16 concept concept 31.01.06 G partially learned concept 31.02.08 generalization complete generalization 31.02.16concept description 31.02.02 concept generalization 31.02.12concept formation 31.02.07 consistent generalization 31.02.13concept generalization 31.02.12concept learning 31.01.07constraint-based generalization 31.02.14concept specialization 31.02.17concept validation 31.02.19similarity-based generalization 31.02.15conceptual conceptual clustering 31.01.08 genetic genetic learning 31.03.26confusion confusion matrix 31.02.18

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 标准规范 > 国际标准 > 其他

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1