2019年春八年级数学下册第3章图形的平移与旋转3.2图形的旋转第2课时旋转作图课件(新版)北师大版.ppt

上传人:ideacase155 文档编号:952273 上传时间:2019-03-08 格式:PPT 页数:23 大小:860.50KB
下载 相关 举报
2019年春八年级数学下册第3章图形的平移与旋转3.2图形的旋转第2课时旋转作图课件(新版)北师大版.ppt_第1页
第1页 / 共23页
2019年春八年级数学下册第3章图形的平移与旋转3.2图形的旋转第2课时旋转作图课件(新版)北师大版.ppt_第2页
第2页 / 共23页
2019年春八年级数学下册第3章图形的平移与旋转3.2图形的旋转第2课时旋转作图课件(新版)北师大版.ppt_第3页
第3页 / 共23页
2019年春八年级数学下册第3章图形的平移与旋转3.2图形的旋转第2课时旋转作图课件(新版)北师大版.ppt_第4页
第4页 / 共23页
2019年春八年级数学下册第3章图形的平移与旋转3.2图形的旋转第2课时旋转作图课件(新版)北师大版.ppt_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、3.2 图形的旋转,第2课时 旋转作图,第三章 图形的平移与旋转,能够根据旋转的基本性质进行简单作图. (重点),A,B,C,D,E,F,G,H,K,L,M,N,回顾平移的特征,导入新课,O,F,A,B,C,D,E,回顾旋转的特征,画一画:如图,画出线段 AB绕点A按顺时针方向旋转60后的线段,讲授新课,作法:(1)如图,以AB为一边按顺时针方向画BAX,使得BAX=60. (2)在射线AX上取点C,使得AC=AB.线段AC为所求,X,C,画出下图所示的四边形 ABCD 以 O为中心, 旋转角都为 60的旋转图形,试一试,B,A,C,D,拓展提升,相同:都是一种运动;运动前后不改变图形的形状和

2、大小.,B,A,C,O,不同,平移和旋转的异同:,例1 如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把ADE顺时针旋转90,画出旋转后的图形.,作图关键关键是确定点E的对应点E,想一想:本题中作图的关键是什么?,解:点A是旋转中心,它的对应点是 .正方形ABCD中,AD=AB,DAB= ,所以旋转后 重合. 设点E的对应点为E. ADE ABE ABE , BE , 因此 .,E ,点A,90 ,ADE,90 ,DE,在CB的延长线 上截取点E,使BE =DE,则ABE为旋转后的图形.,答:延长CB,以点A为圆心,AE 的长为半径画弧,交CB的延长线于E,连接AE,则ABE为旋转

3、后的图形.,想一想: 还有其他方法确定点E的对应点E吗?,(1)明确旋转三要素: 旋转中心、旋转方向和旋转角度.,旋转作图的基本步骤:,(2)找出关键点;,(3)作出关键点的对应点;,(4)作出新图形;,(5)写出结论.,D,E,B,F,C,A,考考你:,借助上图,如何确定它们的旋转中心位置?,答:找到两条对应点连线段的垂直平分线的交点.,例2. 怎样将甲图案变成乙图案?,甲,甲,乙,乙,A,B,B,A,可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB方向将所得图案平移到B点位置,即可得到乙图案,还可以用什么方法把甲图案变成乙图案?,下图由四部分组成,每部分都包括两个小“十”

4、字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?,平移:,平移的方向,平移的距离,仅靠平移无法得到,旋转:,下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?,整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90、180、270前后图形组成的.,平移、 旋转相结合:,先平移,后旋转,下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?,整个图形可以看作是左边的两个小

5、“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90前后图形组成的.,轴对称:,下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?,直线EF与GH相交于图形的中心O,且互相垂直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.,O,对称轴?,如图,怎样将右边的图案变成左边的图案?,答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90,然后平移,即可得到左边的图案.,1.选择不同的_、不同的_旋转同一个图案,会出现不同的效果

6、. (1)两个旋转中,旋转中心不变, _ 改变了,产生了_的旋转效果.,(2)两个旋转中,旋转角不变,_改变了,产生了_的旋转效果.,旋转中心,旋转角,旋转角,不同,旋转中心,不同,2.我们可以借助旋转可以设计出许多美丽的图案.,1.如图,四边形ABCD绕O点旋转后,顶点A的对应点为E,试确定B、C、D对应的点的位置,以及旋转后的四边形,解:(1)连接OA、OB、OC、OD、OE;,(2)分别以OB、OC、OD为一边作BOF, COG, DOH,使BOF= COG= DOH= AOE;,(3)分别在射线OF,OG,OH上,截取OF=OB,OG=OC,OH=OD;,(4)连接EF,FG,GH,HE,,四边形EFGH就是四边形ABCD绕O点旋转后的图形,当堂练习,2.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?,A,B,C,D,E,F,O,解:,方案一:,把正方形ABCD绕点D,顺时针旋转90.,方案二:,把正方形ABCD绕点C,逆时针旋转90.,方案三:,把正方形ABCD绕CD的,中点O旋转180.,课堂小结,旋转的作图,作旋转图形,作图基本步骤五步,确定旋转中心,找两条对应点连线段的垂直平分线的交点,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学课件 > 中学教育

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1