ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:2.08MB ,
资源ID:1079768      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1079768.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019高考数学三轮冲刺大题提分大题精做10函数与导数:存在、恒成立与最值问题文.docx)为本站会员(jobexamine331)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019高考数学三轮冲刺大题提分大题精做10函数与导数:存在、恒成立与最值问题文.docx

1、1大题精做 10 函数与导数:存在、恒成立与最值问题2019广州一模已知函数 elnxfa(1)若 ea,求 fx的单调区间;(2)当 0时,记 f的最小值为 m,求证 1【答案】 (1)函数 fx的单调递减区间为 0,,单调递增区间为 1,;(2)见解析【解析】 (1)当 ea时, elnxf, fx的定义域是 0,,1x xfx,当 0时, 0f;当 1时, 0f所以函数 fx的单调递减区间为 ,,单调递增区间为 1,(2)证明:由(1)得 fx的定义域是 0,, exfxa,令 exga,则 1exg, g在 ,上单调递增,因 为 0,所以 0, 0a,故 存在 0,xa,使得 00ex

2、g当 ,时, x, 10xfa, fx单调递减;当 0,x时, 0g, exf, f单调递增;故 时, fx取得最小值,即 000lnxmfax,由 0exa,得 00enllxxa,令 , lh,则 1lnlhx,当 0,1x时, ln0x, lx单调递增,当 ,时, lh, lnhx单调递减,故 1x,即 a时, lxx取最大值 1, m12019青海联考已知函数 e1xfa2(1)讨论函数 fx的单调性;(2)当 f有最小值, 且最小值不小于 21a时,求 a的取值范围22019咸阳模拟设函数 1exfxm, R(1)当 1m时,求 f的单调区间;(2)求证:当 0,x时, 1len2x

3、332019茂名一模已知函数 1exafR在 2x处的切线斜率为 e2(1)求实数 a的值,并讨论函数 fx的单调性;(2)若 elnxgf,证明: 1g1 【答案】 (1)见解析;(2) 0,1【解析】 ( 1) exfa,4当 0a时, e0xfa,所以函数 fx在 R上单调递增;当 时,令 f,解得 lna,当 ,lnxa时, 0fx,故函数 fx在 ,lna上单调递减;当 l,时, f,故函数 f在 l,上单调递增(2)由(1)知,当 0a时,函数 fx在 R上单调递增,没有最小值,故 0a2minlln1fxf a,整理得 20aa,即 l0令 l()g,易知 g在 ,上单调递增,且

4、 10g;所以 ln20a的解集为 ,1,所以 0,1a2 【答案】 (1)见解析;(2)见解析【解析】 (1)当 m时, exfx, exf,令 1e0xf,则 当 0x时, 0fx;当 时, 0f,函数 f的单调递增区间是 ,;单调递减区间是 0,(2)由(1)知,当 1m时, max0ff,当 0,x时, e0x,即 1,当 ,时,要证 1ln2,只需证 2exx,令 2eexxxF, 2ln1e1exxxxxx ,由 e1x,可得 2e1x,则 0,时, 0F恒成立,即 Fx在 0,上单调递增, 0Fx即 2e1xx, ln2x3 【答案】 (1)见解析;(2)见解析【解析】 (1)

5、122eexxxaf a,由切线斜率 21kf, 解得 512exf,其定义域为 ,0,, 12exf,令 0,解得 ,故 fx在区间 1,上单调递增;令 fx,解得 1x,且 0,故 f在区间 ,0和区间 ,1上单调递减(2)由(1)知 12elnxg,定义域为 ,从而 x等价于 x,设 ln0h,则 ln1h, 1ln0eh当 e1,x时, x;当 ,x时, x故 h在区间 0,上单调递减,在区间 1e,上单调递增,从而 x在 1,e的最小值为 h设 20xm,则 1exm,当 ,1时, ;当 ,时, 0mx,故 x在区间 0,上单调递增,在区间 1,上单调递减,从而 m在 ,的最大值为 e,综上所述,在区间 0,上恒有 hxm成立,即 1gx6

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1