ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:1.92MB ,
资源ID:1093780      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1093780.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(版选修4_5.docx)为本站会员(sumcourage256)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

版选修4_5.docx

1、14.1 数学归纳法预习案一、预习目标及范围1了解数学归纳法的原理及其使用范围2会利用数学归纳法证明一些简单问题二、预习要点教材整理 数学归纳法的概念一般地,当要证明一个命题对于不小于某正整数 n0的所有正整数 n 都成立时,可以用以下两个步骤:(1)证明当 时命题成立;(2)假设当 时命题成立,证明 时命题也成立在完成了这两个步骤后,就可以断定命题对于不小于 n0的所有正整数都成 立这种证明方法称为数学归纳法三、预习检测1用数学归纳法证明 1 a a2 an1 (a1, nN *),在验证 n11 an 21 a时,等式 左边的项是( )A1 B1 aC1 a a2 D1 a a2 a32在

2、应用数学归纳法证明凸 n 边形的对角线为 n(n3)条 时 ,第一步检验 n 等于( )12A1 B2C3 D03已知 f(n) ,则( )1n 1n 1 1n 2 1n2A f(n)中共有 n 项,当 n2 时, f(2) 12 13B f(n)中共有 n1 项,当 n2 时, f(2) 12 13 14C f(n)中共有 n2 n 项,当 n2 时, f(2) 12 13D f(n)中共有 n2 n1 项,当 n2 时, f(2) 12 13 14探究案一、合作探究2题型一、用数学归纳法证明等式例 1 用数学归纳法证明:1 .12 13 14 12n 1 12n 1n 1 1n 2 12n

3、【精彩点拨】 要证等式的左边共 2n 项,右边共 n 项, f(k)与 f(k1)相比左边增二项,右边增一项,而且左、右两边的首项不同因此,由“ n k”到“ n k1”时要注意项的合并再练一题1用数学归纳法证明:122 23 24 2(2 n1) 2(2 n)2 n(2n1)题型二、用数学归纳法证明整除问题例 2 用数学归纳法证明:(3 n1)7 n1 能被 9 整除( nN )【精彩点拨】 先验证 n1 时命题成立,然后再利用归纳假设证明,关键是找清f(k1)与 f(k)的关系并设法配凑再练一题2求证: n3( n1) 3( n2) 3能被 9 整除.题型三、证明几何命 题例 3 平面内有

4、 n(n2, nN )条直线,其中任意两条不平行,任意三条不过同一点,那么这 n 条直线的交点个数 f(n)是多少?并证明你的结论【精彩点拨】 (1)从特殊入手,求 f(2), f(3), f(4),猜想出一般性结论 f(n);(2)利用数学归纳法证明再练一题3在本例中,探究 这 n 条直线互相分割成线段或射线的条数是多少?并加以证明题型四、数学归纳法的概念例 4 用数学归纳法证明:1 a a2 an1 (a1, nN ),在验证1 an 21 an1 成立时,左边计算的结果是( )A1B1 a3C1 a a2D1 a a2 a3【精彩点拨】 注意左端特征,共有 n2 项,首项为 1,最后一项

5、为 an1 .再练一题4当 f(k)1 ,则 f(k1) f(k)_.12 13 14 12k 1 12k二、随堂检测1用数学归纳法证明:123(2 n1)( n1)(2 n1)时,在验证 n1成立时,左边所得的代数式为( )A1 B13C123 D.12 342某个与正整数 n 有关的命题,如果当 n k(kN 且 k1)时命题成立,则一定可推得当 n k1 时,该命题也成立现已知 n5 时,该命题不成立,那么应有( )A当 n4 时,该命题成立B当 n6 时,该命题成立C当 n4 时,该命题不成立D当 n6 时,该命题不成立3用数学归纳法证明等式( n1)( n2)( n n)2 n13(

6、2n1)( nN )时,从“ n k 到 n k1”左端需乘以的代数式为( )A2 k1 B2(2 k1)C. D.2k 1k 1 2k 3k 14参考答案预习检测:1.答案 C2.答案 C解析 凸 n 边形边数最小时是三角形,故第一步检验 n3.3.答案 D随堂检测:1.【解析】 当 n1 时左边所得的代数式为 123.【答案】 C2.【解析】 若 n4 时命题成立,由递推关系知 n5 时命题成立,与题中条件矛盾,所以 n4 时,该命题不成立【答案】 C3.【解析】 当 n k 时,等式为( k1)( k2)( k k)2 k13(2k1)当 n k1 时,左边( k1)1( k1)2( k1) k(k1)( k1)( k2)( k3)( k k)(2k1)(2 k2)比较 n k 和 n k1 时等式的左边,可知左端需乘以2)2(2 k1)故选 B.【答案】 B

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1