ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:2.33MB ,
资源ID:1097033      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1097033.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考数学考纲解读与热点难点突破专题24函数与方程思想、数形结合思想教学案文(含解析).doc)为本站会员(roleaisle130)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年高考数学考纲解读与热点难点突破专题24函数与方程思想、数形结合思想教学案文(含解析).doc

1、1函数与方程思想、数形结合思想【2019 年高考考纲解读】数学教学的最终目标,是要让 学生会用数学的眼光观察现实世界,会用数学的思维思考现实世界.数学素养就是指学生学习数学应当达成的有特定意义的综合性能力,数学核心素养高于具体的数学知识技能,具有综合性、整体性和持久性,反映数学本质与数学思想,数学核心素养是数学思想方法在具体学习领域的表现.二轮复习中如果能自觉渗透数学思想,加强个人数学素养的培养,就会在复习中高屋建瓴,对整体复习起到引领和导向作用.【高考题型示例】题型一、函数与方程思想在不等式中的应用函数与不等式的相互转化,把不等式转化为函数,借助函数的图象和性质可解决相关的问题,常涉及不等式

2、恒成立问题、比较大小问题.一般利用函数思想构造新函数,建立函数关系求解.例 1.若 0ln x2ln x1B. 21xD.122g(x2), e,故选 C.2例 2.已知定义在 R 上的函数 g(x)的导函数为 g( x),满足 g( x) g(x)1 的解集为_.g xex答案 (,0)例 3.已知 f(t)log 2t, t ,8,对于 f(t)值域内的所有实数 m,不等式 x2 mx42 m4 x 恒成立,2则 x 的取值范围是_.答案 (,1)(2,)解析 t ,8, f(t) .2 12, 3问题转化为 m(x2)( x2) 20 恒成立,当 x2 时,不等式不成立, x2.令 g(

3、m) m(x2)( x2) 2, m .12, 3问题转化为 g(m)在 上恒大于 0,12, 3则Error!即Error!解得 x2 或 x0, 设 Sn f(n),则 f(n)为二次函数,又由 f(7) f(17)知, f(n)的图象开口向上,关于直线 n12 对称,故 Sn取最小值时 n 的值为 12.4例 8.设等差数列 an的前 n 项和为 Sn,若 S42, S63,则 nSn的最小 值为_.答案 9解析 由Error!解得 a12, d1,所以 Sn ,故 nSn .n2 5n2 n3 5n22令 f(x) ,则 f( x) x25 x,x3 5x22 32令 f( x)0,得

4、 x0 或 x ,103 f(x)在 上单调递减,在 上单调递增.(0,103) (103, )又 n 是正整数,故当 n3 时, nSn取得最小值9.题型三、函数与方程思想在解析几何中的应用解析几何中求斜率、截距、半径、点的坐标、离心率等几何量经常要用到方程(组)的思想;直线与圆锥曲线的位置关系问题,可以通过转化为一元二次方程,利用判别式进行解决 ;求变量的取值范围和最值问 题常转化为求函数的值域、最值,用函数的思想分析解答.例 9.以抛物线 C 的顶点为圆心的圆交 C 于 A, B 两点,交 C 的准线于 D, E 两点.已知| AB|4 ,| DE|22,则 C 的焦点到准线的距离为(

5、)5A.2 B.4 C.6 D.8答案 B解析 不妨设抛物线 C: y22 px(p0),圆的方程设为 x2 y2 r2(r0),如图,又可设 A(x0,2 ), D ,2 (p2, 5)点 A(x0,2 )在抛物线 y22 px 上,82 px0,2点 A(x0,2 )在圆 x2 y2 r2上, x 8 r2,2 20点 D 在圆 x2 y2 r2上,5 2 r2,(p2, 5) (p2)联立,解得 p4(负值舍去),即 C 的焦点到准线的距离为 p4,故选 B.5例 10.如图,已知双曲线 C: 1( a0, b0)的右顶点为 A, O 为坐标原点,以 A 为圆心的圆与双曲x2a2 y2b

6、2线 C 的一条渐近线交于 P, Q 两点,若 PAQ60 ,且 3 ,则双曲线 C 的离心率为( )OQ OP A. B. C. D.2 33 72 396 3答案 B解析 因为 PAQ60,| AP| AQ|,所以| AP| AQ| PQ|,设| AQ|2 R,又 3 ,则| OP| |PQ| R.OQ OP 12双曲线 C 的渐近线方程是 y x, A(a,0),ba所以点 A 到直线 y x 的距离 d ,ba|baa 0|(ba)2 1 2 aba2 b2所以 2(2 R)2 R23 R2,(aba2 b2)即 a2b23 R2(a2 b2),在 OQA 中,由余弦定理得, 例 10

7、.设双曲线 C: 1( a0, b0)的左、右顶点分别为 A1, A2,左、右焦点分别为 F1, F2,以 F1F2x2a2 y2b2为直径的圆与双曲线左支的一个交点为 P.若以 A1A2为直径的圆与直线 PF2相切,则双曲线 C 的离心率为( )A. B. C.2 D.2 3 5答案 D解析 如图所示,设以 A1A2为直径的圆与直线 PF2的切点为 Q,连接 OQ,6则 OQ PF2.又 PF1 PF2, O 为 F1F2的中点,所以| PF1|2| OQ|2 a.又| PF2| PF1|2 a,所以| PF2|4 a.在 Rt F1PF2中,由| PF1|2| PF2|2| F1F2|2,

8、得 4a216 a220 a24 c2,即 e .ca 5例 11.已知抛物线的方程为 x28 y, F 是其焦点,点 A(2,4),在此抛物线上求一点 P,使 APF 的周长最小,此时点 P 的坐标为_. 答案 ( 2,12)解析 因为(2) 284,所以点 A(2,4)在抛物线 x28 y 的内部,如图,设抛物线的准线为 l,过点 P 作 PQ l 于点 Q,过点 A 作 AB l 于点 B,连接 AQ,由抛物线的定义可知, APF 的周长为|PF| PA| AF| PQ| PA| AF| AQ| AF| AB| AF|,当且仅当 P, B, A 三点共线时, APF 的周长取得最小值,即

9、| AB| AF|.因为 A(2,4),所以不妨设 APF 的周长最小时,点 P 的坐标为(2, y0),代入 x28 y,得 y0 .12故使 APF 的周长最小的点 P 的坐标为 . ( 2,12)例 12.已知 P 是直线 l:3 x4 y80 上的动点, PA, PB 是圆 x2 y22 x2 y10 的两条切线, A, B 是切点, C 是圆心,则四边形 PACB 面积的最小值为_. 答案 2 2解析 连接 PC,由题意知圆的圆心 C(1,1),半径为 1,从运动的观点看问题,当动点 P 沿直线3x4 y80 向左上方或右下方无穷远处运动时,Rt PAC 的面积 S PAC |PA|AC| |PA|越来越大,从12 12而 S 四边形 PACB也越来越大;7当点 P 从左上、右下两个方向向中间运动时, S 四边形 PACB变小,显然,当点 P 到达一个最特殊的 位置,即CP 垂直于直线 l 时, S 四边形 PACB有唯一的最小值,此时| PC| 3,从而| PA|31 41 8|32 422 ,所以( S 四边形 PACB)min2 |PA|AC|2 .|PC|2 |AC|2 212 2

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1