ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:1.73MB ,
资源ID:1104158      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1104158.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019春九年级数学下册第二章二次函数2.2二次函数的图象与性质第2课时二次函数y=ax2和y=ax2c的图象与性质教案2(新版)北师大版.doc)为本站会员(testyield361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019春九年级数学下册第二章二次函数2.2二次函数的图象与性质第2课时二次函数y=ax2和y=ax2c的图象与性质教案2(新版)北师大版.doc

1、12.2 二次函数的图象与性质第 2 课时 二次函数 y=ax2+c 的图象与性质教学目标: 1、使学生能利用描点法正确作出函数 yax 2b 的图象。2、让学生经历二次函数 yax 2bxc 性质探究的过程,理解二次函数 yax 2b 的性 质及它与函数 yax 2的关系。重点难点:会用描点法画出二次函数 yax 2b 的图象,理解二次函数 yax 2b 的性质,理解函数 yax 2b 与函数 yax 2的相互关系是教学重点。正确理解二次函数 yax 2b 的性质,理解抛物线 yax 2b 与抛物线 yax 2的关系是教学的难点。教学过程:一、提出问题1二 次函数 y2x 2的图象是_,它的

2、开口向_,顶点坐标是_;对称轴是_,在对称轴的左侧,y 随 x 的增大而_,在对称轴的右侧,y 随 x 的增大而_,函数 yax 2与 x_时,取最_值,其最_值是_。2二次函数 y2x 21 的图象与二次函数 y2x 2的图象开口方向、对称 轴和顶点坐标是否相同?二、分析问题,解决问题问题 1:对于前面提出的第 2 个问题,你将采 取什么方法加以研究?(画出函数 y2x 2和函数 y2x 2的图象,并加以比较)问题 2,你能在同一直角坐标系中,画出函数 y2x 2与 y2x 21 的图象吗?解:(1)列表:x 3 2 1 0 1 2 3 yx 2 18 8 2 0 2 8 18 yx 21

3、19 9 3 l 3 9 19 (2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数 y2x 2和 y2x 21 的图象。问题 3:当自变量 x 取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?教师引导学生观察上表,当 x 依次取3,2,1,0,1,2,3 时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量 x 取同一数值时,函数 y2x 21的函数值都比函数 y2x 2的函数值大 1。教师引导学生观察函数 y2x 21 和 y2x 2的图象,先研究点(1,2)和点( 1,

4、3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数 y2x 21 的图象上的点都是由函数 y2x 2的图象上的相应点向上移动了一个单位。问题 4:函数 y2x 21 和 y2x 2的图象有什么联系 ?由问题 3 的探索,可以得到结论:函数 y2x 21 的图象可以看成是将函数 y2x 2的图象向上平移一个单位得到的。问题 5:现在你能回答前面提出的第 2 个问题了吗? 让学生观察两个函数图象,说出函数 y2x 21 与 y2x 2的图象开口方向、对称轴相同,但顶点坐标不同,函数 y2x 2的图象的顶点坐标是(0,0),而函数 y2x 21

5、的图象2的顶点坐标是(0,1)。问题 6:你能由函数 y2x 2的性质,得到函数 y2x 21 的一些性质吗?完 成填空:当 x_时,函数值 y 随 x 的增大而减小;当 x_时,函数值 y 随 x 的增大而增大,当 x_时,函数取得最_值,最_值 y_以上就是函数 y2x 21 的性质。三、做一做问题 7:先在同一直角坐标系中画出 函数 y2x 22 与函数 y2x 2的图象,再作比较,说说它们有什么联系和区别?教学要点让学生发表意见,归纳为:函数 y2x 22 与函数 y2x 2的图象的开口方向、对称轴相同,但顶点坐标不同。函数 y2x 22 的图象可以看成是将函数 y2x 2的图象向下平

6、移两个单位得到的。 问题 8:你能说出函数 y2x 22 的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?教学要点1让学生口答,函数 y2x 22 的图象的开口向上,对称轴为 y 轴,顶点坐标是(0,2);2分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当 x0 时,函数值 y 随 x 的增大而减小;当 x0 时,函数值 y 随 x 的增大而增大,当 x0 时,函数取得最小值,最小值 y2。问题 9:在同一直角坐标系中。函数 y x22 图象与函数 y x2的图象有什么13 13关系?要求学生能够画出函数 y x2与函数 y x22 的草图,由草图观察得出结论:13 13函

7、数 y 1/3x22 的图象与函数 y x2的图象的开口方向、对称轴相同,但顶点坐13 13标不同,函数 y x22 的图象可以看成将函数 y x2的图象向上平移两个单位得到13 13的。问题 10:你能说出函数 y x22 的图象的开口方向、对称轴和顶点坐标吗?13函数 y x22 的图象的开口向下,对称轴为 y 轴,顶点坐标是(0,2)13问题 11:这个函数图象有哪些性质?让学生观察函数 y x22 的图象得出性质:当 x0 时,函数值 y 随 x 的增大而增13大;当 x0 时,函数值 y 随 x 的增大而减小;当 x0 时,函数取得最大值,最大值y2。四、练习: 练习 1、2、3。五、小结1在同一直角坐标系中,函数 yax 2k 的图象与函数 yax 2的图象具有什么关系?2你能说出函数 yax 2k 具有哪些性质?3六、作业:1习题 1(1)教后反思:

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1