ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:2.37MB ,
资源ID:1118107      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1118107.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((通用版)2019版高考数学二轮复习专题检测(七)导数的简单应用理(普通生,含解析).doc)为本站会员(medalangle361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

(通用版)2019版高考数学二轮复习专题检测(七)导数的简单应用理(普通生,含解析).doc

1、1专题检测(七) 导数的简单应用A 组“633”考点落实练一、选择题1已知函数 f(x)的导函数 f( x)满足下列条件: f( x)0 时, x2; f( x)0, xln a,代入曲线方程得 y1 ln a,所以切线方程为 y(1ln a)2( xln a),即 y2 xln a12 x1 a1.3(2019 届高三广州高中综合测试)已知函数 f(x) x3 ax2 bx a2在 x1 处的极值为 10,则数对( a, b)为( )A(3,3) B(11,4)C(4,11) D(3,3)或(4,11)解析:选 C f( x)3 x22 ax b,依题意可得Error!即Error! 消去

2、b 可得 a2 a120,解得 a3 或 a4,故Error!或Error!当Error!时,f( x)3 x26 x33( x1) 20,这时 f(x)无极值,不合题意,舍去,故选 C.4已知 f(x) x2 ax3ln x 在(1,)上是增函数,则实数 a 的取值范围为( )A(,2 B.6 ( ,62C2 ,) D5,)6解析:选 C 由题意得 f( x)2 x a 0 在(1,)上恒成立3x 2x2 ax 3xg(x)2 x2 ax30 在(1,)上恒成立 a2240 或Error!2 a262或 Error!a2 ,故选 C.6 65(2018全国卷)设函数 f(x) x3( a1)

3、 x2 ax,若 f(x)为奇函数,则曲线y f(x)在点(0,0)处的切线方程为( )A y2 x B y xC y2 x D y x解析:选 D 法一: f(x) x3( a1) x2 ax, f( x)3 x22( a1) x a.又 f(x)为奇函数, f( x) f(x)恒成立,即 x3( a1) x2 ax x3( a1) x2 ax 恒成立, a1, f( x)3 x21, f(0)1,曲线 y f(x)在点(0,0)处的切线方程为 y x.法二:易知 f(x) x3( a1) x2 ax xx2( a1) x a,因为 f(x)为奇函数,所以函数 g(x) x2( a1) x

4、a 为偶函数,所以 a10,解得 a1,所以 f(x) x3 x,所以 f( x)3 x21,所以 f(0)1,所以曲线 y f(x)在点(0,0)处的切线方程为 y x.故选 D.6函数 f(x)(x0)的导函数为 f( x),若 xf( x) f(x)e x,且 f(1)e,则( )A f(x)的最小值为 e B f(x)的最大值为 eC f(x)的最小值为 D f(x)的最大值为1e 1e解析:选 A 设 g(x) xf(x)e x,所以 g( x) f(x) xf( x)e x0,所以 g(x) xf(x)e x为常数函数因为 g(1)1 f(1)e0,所以 g(x) xf(x)e x

5、 g(1)0,所以 f(x) , f( x) ,exx ex x 1x2当 01 时, f( x)0,所以 f(x) f(1)e.二、填空题7(2019 届高三西安八校联考)曲线 y2ln x 在点(e 2,4)处的切线与坐标轴所围成的三角形的面积为_解析:因为 y ,所以曲线 y2ln x 在点(e 2,4)处的切线斜率为 ,所以切线方程2x 2e23为 y4 (xe 2),即 x y20.令 x0,则 y2;令 y0,则 xe 2,所以切2e2 2e2线与坐标轴所围成的三角形的面积 S e22e 2.12答案:e 28已知函数 f(x) x25 x2ln x,则函数 f(x)的单调递增区间

6、是_解析:函数 f(x) x25 x2ln x 的定义域是(0,),令 f( x)2 x5 2x 0,解得 02,故函数 f(x)的单调递增区间是2x2 5x 2x x 2 2x 1x 12和(2, )(0,12)答案: 和(2,)(0,12)9若函数 f(x) x aln x 不是单调函数,则实数 a 的取值范围是_解析:由题意知 f(x)的定义域为(0,), f( x)1 ,要使函数 f(x) x aln axx 不是单调函数,则需方程 1 0 在(0,)上有解,即 x a, a0,得 ln 20,所以 f(x)在0,1上单调递增,所以 f(x)max f(1)e1.11(2018潍坊统一

7、考试)已知函数 f(x) axln x, F(x)e x ax,其中 x0, a0,1x ax 1x a0,即 F(x)在(0,)上单调递增,不合题意,当 a0,得 xln( a);由 F( x)1.xln x(1)若 f(x)在(1,)上单调递减,求实数 a 的取值范围;(2)若 a2,求函数 f(x)的极小值解:(1) f( x) a,ln x 1ln2x由题意可得 f( x)0 在(1,)上恒成立, a 2 .1ln2x 1ln x ( 1ln x 12) 14 x(1,),ln x(0,),当 0 时,函数 t 2 的最小值为 ,1ln x 12 ( 1ln x 12) 14 14 a

8、 ,即实数 a 的取值范围为 .14 ( , 14(2)当 a2 时, f(x) 2 x(x1),xln xf( x) ,ln x 1 2ln2xln2x令 f( x)0,得 2ln2xln x10,解得 ln x 或 ln x1(舍去),即 xe12.12当 1e12时, f( x)0, f(x)的极小值为 f(e12) 2e124e .e12B 组大题专攻补短练1(2019 届高三益阳、湘潭调研)已知函数 f(x)ln x ax2 x, aR.5(1)当 a0 时,求曲线 y f(x)在点(e, f(e)处的切线方程;(2)讨论 f(x)的单调性解:(1)当 a0 时, f(x)ln x

9、x, f(e)e1, f( x) 1, f(e)1 ,1x 1e曲线 y f(x)在点(e, f(e)处的切线方程为 y(e1) (xe),即 y x.(11e) (1e 1)(2)f( x) 2 ax1 , x0,1x 2ax2 x 1x当 a0 时,显然 f( x)0, f(x)在(0,)上单调递增;当 a0 时,令 f( x) 0,则2 ax2 x10,易知其判别式为正, 2ax2 x 1x设方程的两根分别为 x1, x2(x10. 2ax2 x 1x 2a x x1 x x2x令 f( x)0,得 x(0, x2),令 f( x)0.a x 1x2(1)求函数 f(x)的单调区间;(2

10、)若直线 x y10 是曲线 y f(x)的切线,求实数 a 的值(3)设 g(x) xln x x2f(x),求 g(x)在区间1,e上的最小值(其中 e 为自然对数的底数)解:(1)因为函数 f(x) ,a x 1x2所以 f( x) ,a x 1 x2 x2 a x 1x4 a 2 xx3由 f( x)0,得 02,故函数 f(x)的单调递增区间为(0,2),单调递减区间为(,0)和(2,)(2)设切点为( x0, y0),由切线斜率 k1 x ax02 a,a 2 x0x30 306由 x0 y01 x0 10( x a)(x01)0 x01, x0 .a x0 1x20 20 a把

11、x01 代入得 a1,把 x0 代入得 a1,a把 x0 代入无解,a故所求实数 a 的值为 1.(3)因为 g(x) xln x x2f(x) xln x a(x1),所以 g( x)ln x1 a,由 g( x)0,得 xea1 ;由 g( x)0, f(x)在(0,)上单调递增;当 m0 时,令 f( x)0,得 0 ,m2m f(x)在 上单调递增,在 上单调递减(0,m2m) (m2m, )(2)由(1)知,当 m0 时, f(x)在(0,)上单调递增,无最大值当 m0 时, f(x)在 上单调递增,在 ,上单调递减(0,m2m) m2m f(x)max f ln 2 m nln 2

12、 ln m nln 2,(m2m) m2m 14m 12 12 n ln m , m n m ln m .12 12 12 12令 h(x) x ln x (x0),12 127则 h( x)1 ,12x 2x 12x由 h( x)0,得 x ,12 12 h(x)在 上单调递减,在 上单调递增,(0,12) (12, ) h(x)min h ln 2,(12) 12 m n 的最小值为 ln 2.124(2018泉州调研)设函数 f(x)ln( x a) x.(1)若直线 l: y xln 3 是函数 f(x)的图象的一条切线,求实数 a 的值23 23(2)当 a0 时,关于 x 的方程

13、f(x) x2 x m 在区间1,3上有解,求 m 的取值范103围解:(1) f(x)ln( x a) x, f( x) 1,1x a设切点为 P(x0, y0),则 1 , x0 a3.1x0 a 23又 ln(x0 a) x0 x0ln 3 ,23 23ln 3 x0 x0ln 3 , x02, a1.23 23(2)当 a0 时,方程 f(x) x2 x m,103即 ln x x2 x m.73令 h(x)ln x x2 x(x0),则 h( x) 2 x .73 1x 73 3x 1 2x 33x当 x1,3时, h( x), h(x)随 x 的变化情况如下表:x 1 (1, 32) 32 (32, 3) 3h( x) 0 h(x) 43 极大值 ln 32 h(1) , h(3)ln 32 , h ln ,43 43 (32) 32 548当 x1,3时, h(x) ,ln 3 2, ln 32 54 m 的取值范围为 .ln 3 2, ln 32 54

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1