ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:314.50KB ,
资源ID:1139061      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1139061.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019高考数学二轮复习专题四立体几何第一讲空间几何体能力训练理.doc)为本站会员(diecharacter305)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019高考数学二轮复习专题四立体几何第一讲空间几何体能力训练理.doc

1、1第一讲 空间几何体一、选择题1(2018广州模拟)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为 ,则该几何体的俯视图可以是( )83解析:由题意可得该几何体可能为四棱锥,如图所示,其高为 2,底面为正方形,面积为 224,因为该几何体的体积为 42 ,满足条件,13 83所以俯视图可以为一个直角三角形故选 D.答案:D2(2018高考全国卷)已知圆柱的上、下底面的中心分别为 O1、 O2,过直线 O1O2的平面截该圆柱所得的截面是面积为 8 的正方形,则该圆柱的表面积为( )A12 B122C8 D102解析:设圆柱的轴截面的

2、边长为 x,则由 x28,得 x2 , S 圆柱表 2 S 底 S 侧22( )22 2 12.2 2 2故选 B.答案:B3(2018合肥模拟)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A518 B618C86 D1062解析:由三视图可知,该几何体由一个半圆柱与两个半球构成,故其表面积为41 2 2132 1 23286.故选 C.12 12答案:C4(2018沈阳模拟)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A44 B4 22 2C84 D283解析:由三视图可知该几何体是一个四棱锥,记为四棱锥 PABCD,如图所示,其中 P

3、A底面 ABCD,四边形 ABCD 是正方形,且PA2, AB2, PB2 ,所以该四棱锥的侧面积 S 是四个直角三角形的2面积和,即 S2( 22 22 )44 ,故选 A.12 12 2 2答案:A5(2018聊城模拟)在三棱锥 PABC 中,已知 PA底面ABC, BAC120, PA AB AC2,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A10 B183C20 D9 3解析:该三棱锥为图中正六棱柱内的三棱锥PABC, PA AB AC2,所以该三棱锥的外接球即该六棱柱的外接球,所以外接球的直径2R 2 R ,所以该球的表面积为 4 R2 20.42 22 5 5答案:C

4、6(2018高考全国卷)某圆柱的高为 2,底面周长为 16,其三视图如图所示圆柱表面上的点 M 在正视图上的对应点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为( )3A2 B217 5C3 D2解析:先画出圆柱的直观图,根据题图的三视图可知点 M, N 的位置如图所示圆柱的侧面展开图及 M, N 的位置( N 为 OP 的四等分点)如图所示,连接 MN,则图中MN 即为 M 到 N 的最短路径ON 164, OM2,14| MN| 2 .OM2 ON2 22 42 5故选 B.答案:B7在正三棱柱 ABCA1B1C1中, A

5、B2, AA13,点 M 是 BB1的中点,则三棱锥 C1AMC的体积为( )A. B.3 2C2 D22 3解析:取 BC 的中点 D,连接 AD.在正三棱柱 ABCA1B1C1中, ABC 为正三角形,所以 AD BC,又 BB1平面 ABC, AD平面 ABC,所以 BB1 AD,又BB1 BC B,所以 AD平面 BCC1B1,即 AD平面 MCC1,所以点 A 到平面 MCC1的距离就是 AD.在正三角形 ABC 中, AB2,所以 AD ,又 AA13,点 M 是 BB13的中点,所以 S MCC1 S 矩形 BCC1B1 233,所以12 12VC1 AMC VAMCC1 3 .

6、13 3 3答案:A8如图,四棱锥 PABCD 的底面 ABCD 为平行四边形, NB2 PN,则三棱锥 NPAC 与三棱锥 DPAC 的体积比为( )4A12 B18C16 D13解析:由 NB2 PN 可得 .设三棱锥 NPAC 的高为 h1,三棱锥 BPAC 的高为 h,则PNPB 13 .又四边形 ABCD 为平行四边形,所以点 B 到平面 PAC 的距离与点 D 到平面 PAC 的h1h PNPB 13距离相等,所以三棱锥 NPAC 与三棱锥 DPAC 的体积比为 .V1V13S PACh113S PACh 13答案:D9已知球的直径 SC4, A, B 是该球球面上的两点, ASC

7、 BSC30,则棱锥SABC 的体积最大为( )A2 B83C D23 3解析:如图,因为球的直径为 SC,且 SC4, ASC BSC30,所以 SAC SBC90, AC BC2, SA SB2 ,所以 S3SBC 22 2 ,则当点 A 到平面 SBC 的距离最大时,棱锥 ASBC 即12 3 3SABC 的体积最大,此时平面 SAC平面 SBC,点 A 到平面 SBC 的距离为 2 sin 30 ,3 3所以棱锥 SABC 的体积最大为 2 2,故选 A.13 3 3答案:A二、填空题10(2018洛阳统考)已知点 A, B, C, D 均在球 O 上, AB BC , AC2 .若三

8、棱6 3锥 DABC 体积的最大值为 3,则球 O 的表面积为_解析:由题意可得, ABC , ABC 的外接圆半径 r ,当三棱锥的体积最大时, 2 3VDABC S ABCh(h 为 D 到底面 ABC 的距离),即 3 hh3,即13 13 12 6 6R 3( R 为外接球半径 ),解得 R2,球 O 的表面积为 42 216.R2 r25答案:1611已知某几何体的三视图如图,其中正视图中半圆直径为 4,则该几何体的体积为_解析:由三视图可知该几何体为一个长方体挖掉半个圆柱,所以其体积为248 2 22644.12答案:64412某几何体的三视图如图所示,则该几何体中,面积最大的侧面

9、的面积为_解析:由三视图可知,几何体的直观图如图所示,平面 AED平面 BCDE,四棱锥ABCDE 的高为 1,四边形 BCDE 是边长为 1 的正方形,则 S ABC S ABE 1 , S12 2 22ADE , S ACD 1 ,故面积最大的侧面的面积为 .12 12 5 52 52答案:5213(2018福州四校联考)已知三棱锥 ABCD 的所有顶点都在球 O 的球面上, AB 为球O 的直径,若该三棱锥的体积为 , BC3, BD , CBD90 ,则球 O 的体积为3 3_解析:设 A 到平面 BCD 的距离为 h,三棱锥的体积为 , BC3, BD3, CBD90, 3 h , h2,球心 O 到平面 BCD 的距313 12 3 3离为 1.设 CD 的中点为 E,连接 OE,则由球的截面性质可得 OE平面CBD, BCD 外接圆的直径 CD2 ,球 O 的半径 OD2,球 O 的体积为36.323答案:323

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1