1、3.2.3空间的角的计算,空间的角:,线线角、线面角、面面角。,空间的角最终都可以转化为两相交直线所成的角。因此我们可以考虑通过两个向量的夹角去求这些空间角。,异面直线所成角的范围:,思考:,结论:,一、线线角:,所以 与 所成角的余弦值为,解:以点C为坐标原点建立空间直角坐标系 ,如图所示,设 则:,所以:,例一:,练习:,在长方体 中,,简解:,直线与平面所成角的范围:,思考:,结论:,二、线面角:,简解:,所以,练习:,x,y,z,设正方体棱长为1,,将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。如图,设二面角 的大小为 ,其中,D,C,B,A,三、面
2、面角:,方向向量法:,二面角的范围:,例三:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线 (库底与水坝的交线)的距离AC和BD分别为和 ,CD的长为 , AB的长为 。求库底与水坝所成二面角的余弦值。,解:如图,,化为向量问题,根据向量的加法法则有,于是,得,设向量 与 的夹角为 , 就是库底与水坝所成的二面角。,因此,所以,所以库底与水坝所成二面角的余弦值为,三、面面角:,二面角的范围:,法向量法,注意法向量的方向: 一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角,设平面,用空间向量解决立体几何问题的“三步曲”。,(1)建立立体图形与空间
3、向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;,(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;,(3)把向量的运算结果“翻译”成相应的几何意义。,(化为向量问题),(进行向量运算),(回到图形问题),点拨:,1、如果平面的一条斜线与它在这个平面上的射影的方向向量分别是 n1=(1,0,1), n2 =(0,1,1),那么这条斜线与平面所成的角是_ .,2、已知两平面的法向量分别m=(0,1,0),n=(0,1,1),则两平面所成的钝二面角为_ .,3. 三棱锥P-ABC PAABC,PA=AB=AC, ,E为PC中点 ,则PA与BE所成角的余弦值为_ .,课堂练习,小结:,1.异面直线所成角:,2.直线与平面所成角:,D,C,B,A,3.二面角:,一进一出,二面角等于法向量的夹角; 同进同出,二面角等于法向量夹角的补角。,