ImageVerifierCode 换一换
格式:PPT , 页数:21 ,大小:1.84MB ,
资源ID:1150432      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1150432.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年高中数学第二章圆锥曲线与方程2.1.1椭圆及其标准方程课件5北师大版选修1_1.ppt)为本站会员(lawfemale396)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2018年高中数学第二章圆锥曲线与方程2.1.1椭圆及其标准方程课件5北师大版选修1_1.ppt

1、椭圆的定义及其方程与性质,1、椭圆的第一定义:,平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。,几点说明:,1、F1、F2是两个不同的定点;,2、M是椭圆上任意一点,且|MF1| + |MF2| = 常数;,3、通常这个常数记为2a,焦距记为2c,且2a2c(?);,4、如果2a = 2c,则M点的轨迹是线段F1F2.,5、如果2a 2c,则M点的轨迹不存在.(由三角形的性质知),2、椭圆的标准方程,焦点在x轴上的椭圆的标准方程:设焦点为,长轴长为2a,短轴长为2b(ab),则椭圆的标准方程为, 其

2、中 .其范围 对称轴为x轴、y轴;顶点 离心率 类似的,可以写出焦点在y轴上的椭圆标准方程及其性质。,O,X,Y,F1,F2,M,如图所示: F1、F2为两定点,且|F1F2|=2c,求平面内到两定点F1、F2距离之和为定值2a(2a2c)的动点M的轨迹方程。,解:以F1F2所在直线为X轴, F1F2 的中点为原点建立平面直角坐标系,则焦点F1、F2的坐标分别为(-c,0)、 (c,0)。,(-c,0),(c,0),(x,y),设M(x,y)为所求轨迹上的任意一点,,则:|MF1|+ |MF2|=2a,O,X,Y,F1,F2,M,(-c,0),(c,0),(x,y),两边平方得:a4-2a2c

3、x+c2x2=a2x2-2a2cx+a2c2+a2y2,即:(a2-c2)x2+a2y2=a2(a2-c2),因为2a2c,即ac,所以a2-c20,令a2-c2=b2,其中b0,代入上式可得:,b2x2+a2y2=a2b2,两边同时除以a2b2得:,(ab0),这个方程叫做椭圆的标准方程, 它所表示的椭圆的焦点在x 轴上。,O,X,Y,F1,F2,M,(-c,0),(c,0),O,X,Y,F1,F2,M,(0,-c),(0 , c),椭圆的标准方程的再认识:,(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1,(2)椭圆的标准方程中三个参数a、b、c满足a2=b2+c2。,(3)由椭

4、圆的标准方程可以求出三个参数a、b、c的值。,(4)椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上。,椭圆的标准方程,定 义,图 形,方 程,焦 点,F(c,0),F(0,c),a,b,c之间的关系,c2=a2-b2,|MF1|+|MF2|=2a,小 结:,注意:,(3)若a2在 x2之下,则焦点在x轴上;,若a2在y2之下,则焦点在y轴上.,(2)a、b、c有关系式:c2=a2-b2,即,a2=b2+c2,a最大.,(1)在两种方程中,总有ab0;,例1、填空: (1)已知椭圆的方程为: ,则a=_,b=_,c=_,焦点坐标为:_焦距等于_;若CD为过左焦点F1的弦,则三角形

5、F2CD的周长为_,5,4,3,(3,0)、(-3,0),6,20,F1,F2,C,D,例题讲解,(2)已知椭圆的方程为: ,则a=_,b=_,c=_,焦点坐标为:_焦距等于_;曲线上一点P到左焦点F1的距离为3,则点P到另一个焦点F2的距离等于_,则三角形F1PF2的周长为_,2,1,(0,-1)、(0,1),2,例2、求满足下列条件的椭圆的标准方程:(1)满足a=4,b=1,焦点在X轴上的椭圆的标准方程为_,(2)满足a=4,c= ,焦点在Y轴上的椭圆的标准方程为_,教材例1 求适合下列条件的椭圆的标准方程:,(1)两个焦点的坐标分别是(4,0)、(4,0),椭圆上的一点P到两焦点距离的和

6、等于10;,解: 椭圆的焦点在x轴上, 设它的标准方程为, 所求的椭圆的标准方程为, 2a=10, 2c=8, a=5, c=4,(2)两个焦点的坐标分别是(0,2)、(0,2),并且椭圆经过点,解: 椭圆的焦点在y轴上,,由椭圆的定义知,,教材例1 求适合下列条件的椭圆的标准方程:, 设它的标准方程为,又 c=2, 所求的椭圆的标准方程为,教材例2 : 已知B、C是两个定点,|BC|=6,且ABC的周长等于16,求顶点A的轨迹方程。,分析:在解析几何里,求符合某种条件的点的轨迹方程,要建立适当的坐标系。为选择适当的坐标系,常常需要画出草图。,解:建立如图坐标系,使x轴经过点B、C,原点O与B

7、C的中点重合。,|BC|=6 ,|AB|+|AC|=166=10,,但当点A在直线BC上,即y=0时,A、B、C三点不能构成三角形,所以点A的轨迹方程是:,O,X,Y,B,C,A,经画图分析,点A的轨迹是椭圆。,2c=6,,2a=16-6=10,,c=3,a=5,所以点A的轨迹是椭圆,,教材例3: 如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段PP中点M的轨迹。,解:设M(x,y), P(x0,y0),所以M点的轨迹是一个椭圆。,例3:若方程4x2+ky2=1表示的曲线是焦点在y轴上的椭圆,求k的取值范围。,解:由 4x2+ky2=1,可得,因为方程表示的曲线是

8、焦点在y轴上的椭圆,所以,即:0k4,所以k的取值范围为0k4。,例4、化简:,O,X,Y,F1,F2,M,(0,-3),(0 , 3),(x,y),答案:,|MF1|+ |MF2|=10,分析:点M(x,y)到两定点(0,-3)、(0,3)的距离之和为定值10。,3、椭圆的第二定义(性质补充):,平面上到一个定点(焦点)和到一条定直线(准线)的距离之比为小于1的正常数(离心率)的点的轨迹是一个椭圆;,准线方程为 ;,设 为椭圆上一点,则椭圆的左焦半径 ,右焦半径 ;,椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后, 反射光线会通过另一个焦点。,例5 给定 ,已知 是椭圆 上的点,F是左焦点,当 取最小值时,求点B的坐标.,例6 已知椭圆C: 的左右焦点分别是 、 ,离心率为 ,直线 与x轴、y轴分别交于点A、B,M是直线 与 椭圆C的一个公共点,P是点 关于直线 的对称点,设 1.证明: 2.确定 的值,使得 为等腰三角形.,三、小 结:,1、椭圆的两种定义,2、两种标准方程的比较,3、椭圆的准线概念以及光学性质,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1