ImageVerifierCode 换一换
格式:PPT , 页数:11 ,大小:620KB ,
资源ID:1150505      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1150505.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018年高中数学第二章推理与证明2.3.2数学归纳法应用举例课件1新人教B版选修2_2.ppt)为本站会员(fatcommittee260)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2018年高中数学第二章推理与证明2.3.2数学归纳法应用举例课件1新人教B版选修2_2.ppt

1、数学归纳法及其应用举例,数学归纳法是一种证明与自然数有关的数学命题的重要方法。 其格式主要有两个步骤、一个结论:(1)验证当n取第一个值n0(如 n0=1或2等)时结论正确;验证初始条件 (2)假设n=k时结论正确,在假设之下,证明n=k+1时结论也正确;假设推理 (3)由(1)、(2)得出结论.点题,找准起点 奠基要稳,用上假设 递推才真,写明结论 才算完整,一、复习引入:,1、数学归纳法是一种完全归纳法 ,它是在可靠的基础上,利用命题自身具有的传递性,运用“有限”的手段,来解决“无限”的问题。 2、它克服了完全归纳法的繁杂、不可行的缺点,又克服了不完全归纳法结论不可靠的不足,使我们认识到事

2、情由简到繁、由特殊到一般、由有限到无穷.,数学归纳法的核心思想,例1、已知正数数列an中,前n项和为sn,且用数学归纳法证明:,证:(1)当n=1时,=1,结论成立.,(2)假设当n=k时,结论成立,即,则当n=k+1时,故当n=k+1时,结论也成立.,根据(1)、(2)知,对一切正整数n,结论都成立.,数学归纳法证明整除问题:,例1、用数学归纳法证明:当n为正偶数时,xn-yn能被x+y整除.,证:(1)当n=2时,x2-y2=(x+y)(x-y),即能被x+y整除,故命题成立.,(2)假设当n=2k时,命题成立,即x2k-y2k能被x+y整除.,则当n=2k+2时,有,都能被x+y整除.,

3、故x2k+2-y2k+2能被x+y整除,即当n=2k+2时命题成立.,由(1)、(2)知原命题对一切正偶数均成立.,例2、用数学归纳法证明: 能被8整除.,证:(1)当n=1时,A1=5+2+1=8,命题显然成立.,(2)假设当n=k时,Ak能被8整除,即是8的倍数.,那么:,因为Ak是8的倍数,3k-1+1是偶数即4(3k-1+1)也是 8的倍数,所以Ak+1也是8的倍数,即当n=k+1时,命题成立.,由(1)、(2)知对一切正整数n, An能被8整除.,例3、求证:x3n-1+x3n-2+1能被x2+x+1整除.,证:(1)当n=1时, x3n-1+x3n-2+1= x2+x+1,从而命题

4、成立.,(2)假设当n=k时命题成立,即x3k-1+x3k-2+1能被x2+x+1整除,则当n=k+1时,x3(k+1)-1+x3(k+1)-2+1=x3k+2+x3k+1+1,=x3(x3k-1+x3k-2+1)-x3+1 = x3(x3k-1+x3k-2+1)-(x-1)(x2+x+1),因为x3k-1+x3k-2+1、x2+x+1都能被x2+x+1整除,所以上式右边能被x2+x+1整除.,即当n=k+1时,命题成立.,根据(1)、(2)知,对一切正整数n,命题成立.,(4)数学归纳法证明不等式问题:,例1、用数学归纳法证明:,证:(1)当n=2时, 左边= 不等式成立.,(2)假设当n=k(k2)时不等式成立,即有:,则当n=k+1时,我们有:,即当n=k+1时,不等式也成立.,由(1)、(2)原不等式对一切 都成立.,例2、证明不等式:,证:(1)当n=1时,左边=1,右边=2, 不等式显然成立.,(2)假设当n=k时不等式成立,即有:,则当n=k+1时,我们有:,即当n=k+1时,不等式也成立.,根据(1)、(2)可知,原不等式对一切正整数都 成立.,例3、求证:,证:(1)当n=1时,左边= ,右边= ,由于故不等式成立.,(2)假设n=k( )时命题成立,即,则当n=k+1时,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1