ImageVerifierCode 换一换
格式:PPT , 页数:43 ,大小:1.28MB ,
资源ID:1153481      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1153481.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考数学二轮复习专题七解析几何7.3.3圆锥曲线中的定点、定值与存在性问题课件文.ppt)为本站会员(visitstep340)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年高考数学二轮复习专题七解析几何7.3.3圆锥曲线中的定点、定值与存在性问题课件文.ppt

1、7.3.3 圆锥曲线中的定点、定值与存在性问题,-2-,解题策略一,解题策略二,圆锥曲线中的定点问题(多维探究) 解题策略一 直接法,(1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.,-3-,解题策略一,解题策略二,-4-,解题策略一,解题策略二,-5-,解题策略一,解题策略二,-6-,解题策略一,解题策略二,解题心得证明直线和曲线过定点,如果定点坐标没有给出,一般可直接求直线和曲线的方程,然后根据方程的形式确定其过哪个定点;如果得到的方程形如f(x,y)+g(x,y)=0,且方程对参数的任意值都成立,则令 解方程

2、组得定点.,-7-,解题策略一,解题策略二,(1)求椭圆E的方程; (2)设椭圆E的右顶点为A,不过点A的直线l与椭圆E相交于P,Q两点,若以PQ为直径的圆经过点A,求证:直线l过定点,并求出该定点坐标.,-8-,解题策略一,解题策略二,-9-,解题策略一,解题策略二,解题策略二 逆推法,-10-,解题策略一,解题策略二,-11-,解题策略一,解题策略二,解题心得证明直线或曲线过某一确定的定点(定点坐标已知),可把要证明的结论当条件,逆推上去,若得到使已知条件成立的结论,即证明了直线或曲线过定点.,-12-,解题策略一,解题策略二,-13-,解题策略一,解题策略二,-14-,圆锥曲线中的定值问

3、题 解题策略 直接法 例3在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题: (1)能否出现ACBC的情况?说明理由; (2)证明过A,B,C三点的圆在y轴上截得的弦长为定值. 难点突破 (1)先假设能出现ACBC,再验证直线AC,BC的斜率之积是否为-1,从而得结论; (2)设A(x1,0),B(x2,0),点C的坐标已知,由A,B,C三点AB,BC的中垂线方程圆心坐标及圆半径圆在y轴上的弦长.,-15-,解 (1)不能出现ACBC的情况,理由如下:设A(x1,0),B(x2,0), 则x1,x2满足x2+mx-2=0, 所以

4、x1x2=-2. 又C的坐标为(0,1),故AC的斜率与BC的斜率之积为 , 所以不能出现ACBC的情况.,-16-,-17-,解题心得证某一量为定值,一般方法是用一参数表示出这个量,通过化简消去参数,得出定值,从而得证.,-18-,(1)求椭圆C的方程; (2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.,-19-,-20-,-21-,圆锥曲线中的存在性问题 解题策略 肯定顺推法,(1)求椭圆的方程; (2)椭圆左、右焦点分别为F1,F2,过F2的直线l与椭圆交于不同的两点A,B,则F1AB的内切圆的面积是否存在最大

5、值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.,-22-,-23-,-24-,-25-,解题心得存在性问题通常用“肯定顺推法”,将不确定性问题明朗化,其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.,-26-,对点训练4(2018上海,20)设常数t2,在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线:y2=8x(0xt,y0).l与x轴交于点A,与交于点B,P,Q分别是曲线与线段AB上的动点. (1)用t表示

6、点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求AQP的面积; (3)设t=8,是否存在以FP,FQ为邻边的矩形FPEQ,使得点E在上?若存在,求点P的坐标;若不存在,说明理由.,-27-,-28-,-29-,解析几何化简中的换元法 解题策略 换元法,(1)求椭圆C1与抛物线C2的标准方程; (2)过(1,0)的两条相互垂直直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.,-30-,-31-,-32-,解题心得解析几何中常用的化简策略根号内开方开不尽,可把根号外的若干项移至根号内,再使用换元法求解.换元时注意新变量的取值范围.,-33-,-34-,-35-,-36-,解析几何化简中的双参数问题 解题策略 参数法,-37-,-38-,-39-,-40-,解题心得第一步,走解题程序:直线l与曲线C交于A,B两点,设方程联立方程组整理化简两根之和、两根之积、根的判别式. 第二步,与条件对接:与条件等式对接的转化形式为:将条件等式转化为关于x1,x2的表达式或关于y1,y2的表达式,然后,解出两个参数之间的关系式,将双参数问题转换成一个参数的问题,然后用函数的方法处理.,-41-,-42-,-43-,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1