ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:715KB ,
资源ID:1153517      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1153517.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年高考数学二轮复习专题四数列4.2.1等差、等比数列与数列的通项及求和课件文.ppt)为本站会员(孙刚)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019年高考数学二轮复习专题四数列4.2.1等差、等比数列与数列的通项及求和课件文.ppt

1、4.2.1 等差、等比数列与数列的通项及求和,-2-,等差、等比数列的通项及求和 例1(2018全国,文17)记Sn为等差数列an的前n项和,已知a1=-7,S3=-15. (1)求an的通项公式; (2)求Sn,并求Sn的最小值.,解 (1)设an的公差为d,由题意得3a1+3d=-15. 由a1=-7得d=2. 所以an的通项公式为an=2n-9. (2)由(1)得Sn=n2-8n=(n-4)2-16. 所以当n=4时,Sn取得最小值,最小值为-16.,解题心得对于等差、等比数列,求其通项及前n项和时,只需利用等差数列或等比数列的通项公式及求和公式求解即可.,-3-,对点训练1已知等差数列

2、an的前n项和为Sn,等比数列bn的前n项和为Tn,a1=-1,b1=1,a2+b2=2. (1)若a3+b3=5,求bn的通项公式; (2)若T3=21,求S3.,解 设an的公差为d,bn的公比为q,则an=-1+(n-1)d,bn=qn-1. 由a2+b2=2得d+q=3. (1)由a3+b3=5,得2d+q2=6.,因此bn的通项公式为bn=2n-1. (2)由b1=1,T3=21得q2+q-20=0, 解得q=-5或q=4. 当q=-5时,由得d=8,则S3=21. 当q=4时,由得d=-1,则S3=-6.,-4-,可转化为等差、等比数列的问题 例2已知an是公差为3的等差数列,数列

3、bn满足b1=1, b2= ,anbn+1+bn+1=nbn. (1)求an的通项公式; (2)求bn的前n项和.,-5-,解题心得无论是求数列的通项还是求数列的前n项和,通过变形、整理后,能够把数列转化为等差数列或等比数列,进而利用等差数列或等比数列的通项公式或求和公式解决问题.,-6-,对点训练2设an是公比大于1的等比数列,Sn为数列an的前n项和,已知S3=7,且a1+3,3a2,a3+4构成等差数列. (1)求数列an的通项公式; (2)令bn= ,n=1,2,求数列bn的前n项和Tn.,-7-,(2)由(1)得a3n+1=23n, bn=ln 23n=3nln 2. bn+1-bn

4、=3ln 2, 数列bn为等差数列.,-8-,求数列的通项及错位相减求和 例3已知an为等差数列,前n项和为Sn(nN*),bn是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求an和bn的通项公式; (2)求数列a2nbn的前n项和(nN*).,解 (1)设等差数列an的公差为d,等比数列bn的公比为q. 由已知b2+b3=12,得b1(q+q2)=12, 而b1=2,所以q2+q-6=0. 又因为q0,解得q=2. 所以,bn=2n.由b3=a4-2a1, 可得3d-a1=8. 由S11=11b4,可得a1+5d=16, 联立,解得a1=

5、1,d=3,由此可得an=3n-2. 所以,an的通项公式为an=3n-2,bn的通项公式为bn=2n.,-9-,(2)设数列a2nbn的前n项和为Tn,由a2n=6n-2, 有Tn=42+1022+1623+(6n-2)2n, 2Tn=422+1023+1624+(6n-8)2n+(6n-2)2n+1, 上述两式相减,得 -Tn=42+622+623+62n-(6n-2)2n+1,得Tn=(3n-4)2n+2+16. 所以,数列a2nbn的前n项和为(3n-4)2n+2+16.,-10-,解题心得求数列通项的基本方法是利用等差、等比数列通项公式,或通过变形转换成等差、等比数列求通项;如果数列

6、an与数列bn分别是等差数列和等比数列,那么数列anbn的前n项和采用错位相减法来求.,-11-,对点训练3(2018浙江,20)已知等比数列an的公比q1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列bn满足b1=1,数列(bn+1-bn)an的前n项和为2n2+n. (1)求q的值; (2)求数列bn的通项公式.,解 (1)由a4+2是a3,a5的等差中项,得a3+a5=2a4+4, 所以a3+a4+a5=3a4+4=28, 解得a4=8.,-12-,-13-,-14-,求数列的通项及裂项求和 例4设数列an满足a1+3a2+(2n-1)an=2n. (1)求an的通项公

7、式; (2)求数列 的前n项和.,-15-,解 (1)因为a1+3a2+(2n-1)an=2n, 故当n2时,a1+3a2+(2n-3)an-1=2(n-1). 两式相减得(2n-1)an=2.,-16-,解题心得对于已知等式中含有an,Sn的求数列通项的题目,一般有两种解题思路,一是消去Sn得到f(an)=0,求出an;二是消去an得到g(Sn)=0,求出Sn,再求an. 把数列的通项拆成两项之差,求和时中间的项能够抵消,从而求得其和.注意抵消后所剩余的项一般前后对称.,-17-,对点训练4已知an为公差不为零的等差数列,其中a1,a2,a5成等比数列,a3+a4=12. (1)求数列an的

8、通项公式;,-18-,-19-,涉及奇偶数讨论的数列求和 例5已知等差数列an的前n项和为Sn,且a1=2,S5=30.数列bn的前n项和为Tn,且Tn=2n-1. (1)求数列an,bn的通项公式; (2)设cn=(-1)n(anbn+ln Sn),求数列cn的前n项和.,解 (1)S5=5a1+ d=10+10d=30,d=2,an=2n. 对数列bn: 当n=1时,b1=T1=21-1=1, 当n2时,bn=Tn-Tn-1=2n-2n-1=2n-1, 当n=1时也满足上式. bn=2n-1.,-20-,-21-,当n为偶数时, Bn=-(ln 1+ln 2)+(ln 2+ln 3)-(ln 3+ln 4)+ln n+ln(n+1) =ln(n+1)-ln 1=ln(n+1); 当n为奇数时, Bn=-(ln 1+ln 2)+(ln 2+ln 3)-(ln 3+ln 4)+-ln n+ln(n+1) =-ln(n+1)-ln 1=-ln(n+1). 由以上可知,Bn=(-1)nln(n+1).,-22-,对点训练5已知函数f(x)=4x,4,f(a1),f(a2),f(an),2n+3(nN*)成等比数列. (1)求数列an的通项公式;,-23-,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1