ImageVerifierCode 换一换
格式:PPT , 页数:13 ,大小:455KB ,
资源ID:1155132      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1155132.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019高考数学一轮复习第八章立体几何8.3空间点、线、面的位置关系课件文.ppt)为本站会员(jobexamine331)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2019高考数学一轮复习第八章立体几何8.3空间点、线、面的位置关系课件文.ppt

1、第八章 立体几何,高考文数,8.3 空间点、线、面的位置关系,知识清单,考点 空间点、线、面的位置关系1.平面的基本性质,2.点、线、面的位置关系 (1)空间两条直线的位置关系,(2)公理4:平行于同一条直线的两条直线互相平行. (3)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两 个角 相等或互补 . (4)两条异面直线所成的角 过空间任意一点分别引两条异面直线的平行直线,那么这两条相交直线,所成的锐角或直角叫做这两条异面直线所成的角,若记这个角为, 则 . 当两条异面直线所成的角为 时,这两条异面直线互相垂直. (5)直线与平面的位置关系,拓展延伸利用平移法求异面直线所成角的

2、途径: 利用图中已有的平行线平移; 利用特殊点(线段的端点或中点)作平行线; 补形平移.,判断空间点、线、面位置关系的方法 在判断空间直线、平面的位置关系问题时,常采用画图法(尤其是画一 般长方体和正方体),实物判断法(如墙角等),定理性质证明法等.判断命 题真假时应注意命题等价性的转化,从而简化判断过程. 例1 (2017广东五校联考,14)已知m,n是两条不同的直线,、为两个不 同的平面,有下列四个命题: 若,m,n,则mn; 若m,n,mn,则; 若m,n,mn,则; 若m,n,则mn. 其中所有正确命题的序号是 .,方法技巧,解题导引 依据点、线、面位置关系的判定逐项判断 得到正确命题

3、 的序号 结论,解析 对于,当两个平面互相垂直时,分别位于这两个平面内的两条 直线未必垂直,因此不正确.对于,依据结论“由空间一点向一个二 面角的两个半平面(或半平面所在平面)引垂线,这两条垂线的夹角与这 个二面角的平面角相等或互补”可知正确.对于,分别与两条平行 直线平行的两个平面未必平行,因此不正确.对于,由n得在平面 内必存在直线n1平行于直线n;由m,得m,则mn1;又n1n,因 此有mn,正确.综上所述,所有正确命题的序号是.,答案 ,方法点拨 在解决此类问题时,可借助特殊几何体,如正方体、正三棱 锥等来帮助思考.,例2 (2017河北邯郸调研,5)如图,在三棱锥S-ABC中,G1,

4、G2分别是SAB 和SAC的重心,则直线G1G2与BC的位置关系是 ( B )A.相交 B.平行 C.异面 D.以上都有可能,解题导引 连SG1交AB于M,连SG2交AC于N,连MN 利用重心的性质得M、N 分别为AB与AC的中点 得G1G2MN,MNBC 由公理4得G1G2BC,解析 连接SG1并延长交AB于M,连接SG2并延长交AC于N,连接MN.由题 意知SM为SAB的中线,且SG1= SM,SN为SAC的中线,且SG2= SN, 在SMN中, = ,G1G2MN. 易知MN是ABC的中位线,MNBC, 因此可得G1G2BC,即直线G1G2与BC的位置关系是平行.故选B.,证明点共线、线

5、共点及点线共面的方法 1.证明点线共面问题的两种方法:(1)归一法:首先由所给条件中的部分 线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)重合 法:将所有条件分为两部分,然后分别确定平面,再证两平面重合. 2.证明点共线问题的两种方法:(1)先由两点确定一条直线,再证其他各 点都在这条直线上;(2)直接证明这些点都在同一条特定直线上. 3.证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他 直线经过该点.,求证:(1)E、C、D1、F四点共面; (2)CE、D1F、DA三线共点.,例3 如图,在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA的中点.,证明 (1)如图,分别连接EF、A1B、D1C.E、F分别是AB、AA1的中点,EFA1B,EF= A1B. 又A1D1BC,四边形A1D1CB是平行四边形. A1BCD1,EFCD1. EF与CD1确定一个平面. E、F、C、D1,故E、C、D1、F四点共面. (2)由(1)知EFCD1,且EF= CD1, 四边形CD1FE为梯形, CE与D1F相交,设交点为P(如图所示), PCE,CE面ABCD,P面ABCD, 同理,P面A1ADD1. 又面A1ADD1面ADCB=AD,PAD, 故CE、D1F、DA三线共点.,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1