ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:724.50KB ,
资源ID:1180948      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1180948.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河北省2019年中考数学复习三角形第24讲直角三角形与锐角三角函数试题(含解析).doc)为本站会员(王申宇)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

河北省2019年中考数学复习三角形第24讲直角三角形与锐角三角函数试题(含解析).doc

1、1第 24 讲 直角三角形与锐角三角函数1. (2012,河北)如图, AB, CD 相交于点 O, AC CD 于点 C.若 BOD38,则 A52.第 1 题图【解析】 BOD38, AOC38. AC CD 于点 C, A90 AOC903852.2. (2014,河北)如图,将长为 2、宽为 1 的矩形纸片分割成 n 个三角形后,拼成面积为2 的正方形,则 n 不等于(A)第 2 题图A. 2 B. 3 C. 4 D. 5【解析】 如答图将长为 2、宽为 1 的矩形纸片分割成 n 个三角形后,拼成面积为 2 的正方形,则 n 可以为 3,4,5,故 n2.第 2 题答图3. (2018

2、,邯郸一模)如图,在 Rt ABC 中, ACB90, AC6, BC8,则 Rt ABC的中线 CD 的长为(A)第 3 题图A. 5 B. 6 C. 8 D. 10【解析】 在 Rt ABC 中, ACB90, AC6, BC8, AB 10. CDAC2 BC2是 Rt ABC 的中线, CD AB5.124. (2018,唐山路南区三模)如图,在正方形 ABCD 中, AE BE,且 AE3, BE4,则阴影部分的面积是(C)第 4 题图A. 16 B. 18 C. 19 D. 212【解析】 AE BE,且 AE3, BE4,在 Rt ABE 中, AB2 AE2 BE225. S

3、阴影 S 正方形 ABCD S ABE AB2 AEBE25 3419.12 12.直角三角形中的边角关系例 1 (2018,扬州高邮模拟)具备下列条件的 ABC 中,不是直角三角形的是(D)A. A B C B. A B CC. A B C123 D. A B3 C【解析】 选项 A 中 A B C,即 2 C180, C90. ABC 是直角三角形同理可证,B,C 两选项中的 ABC 均是直角三角形选项 D 中 A B3 C,即7 C180,三个角没有 90角,故此选项中的 ABC 不是直角三角形.针对训练 1 (导学号 5892921)如图,在 ABC 中, AD BC,垂足为 D, B

4、E AC,垂足为E, M 为 AB 边的中点,连接 ME, MD, ED.设 AB4, DBE30,则 DEM 的面积为 .3训练 1 题图【解析】 在 ABC 中, AD BC, BE AC, ABE, ADB 是直角三角形 EM, DM分别是它们斜边上的中线 EM DM AB. ME AB MA, MAE MEA.12 12 BME2 MAE.同理MD AB MA. MAD MDA. BMD2 MAD. EMD BME BMD2 MAE2 MAD122 DAC2 DBE60.所以 DEM 是边长为 2 的正三角形,所以 S DEM .3针对训练 2 (2018,宜城模拟)在 ABC 中,

5、AB10, AC2 , BC 边上的高 AD6,则10BC 的长为 10 或 6.【解析】 本题分两种情况(1)如答图, AB10, AC2 , AD6.在 Rt ABD 和10Rt ACD 中,根据勾股定理,得 BD 8, CD 2,此时AB2 AD2 AC2 AD2BC BD CD8210.(2)如答图, AB10, AC2 , AD6.在 Rt ABD 和 Rt ACD 中,10根据勾股定理,得 BD 8, CD 2,此时 BC BD CD826.综AB2 AD2 AC2 AD2上所述, BC 的长为 10 或 6.训练 2 答图锐角三角函数的定义例 2 (2018,哈尔滨道里区模拟)如

6、图,在 Rt ABC 中, C90, B35,3AB3,则 BC 的长为(C)例 2 题图A. 3sin 35 B. C. 3cos 35 D. 3tan 353cos 35【解析】 cos 35 , BC3cos 35.CBAB CB3针对训练 3 (2018,唐山古冶区二模)如图,在由边长为 1 的小正方形构成的网格中, O 的半径为 1,圆心 O 在格点上,则 tan AED 等于(C)训练 3 题图A. 1 B. C. D. 22 12 32【解析】 AC1, AB2,tan ABC .由圆周角定理,得 AED ABC.ACAB 12tan AED .12针对训练 4 如图,在 22

7、正方形网格中,以格点为顶点的 ABC 的面积等于 ,则32sin CAB 等于(B)训练 4 题图A. B. C. D. 332 35 105 310【解析】 如答图,作 CD AB 于点 D.由题意,得 AB AC , BC .由三角形的面积,5 2得 ABCD . CD .sin CAB .12 32 355 CDAC 3555 35训练 4 答图特殊角的三角函数值例 3 (2018,嘉兴一模 )把一把直尺与一块三角板如图所示放置若 sin1 ,则2224的度数为(B)例 3 题图A. 120 B. 135 C. 145 D. 150【解析】 如答图sin1 ,145.在 Rt EFG 中

8、,390221904545,41803135. AB CD,24135.例 3 答图针对训练 5 在 ABC 中, A, B 都是锐角,tan A 1,sin B ,你认为 ABC 最22确切的判断是(B)A. 等腰三角形 B. 等腰直角三角形 C. 直角三角形 D. 锐角三角形【解析】 由题意,得 A45, B45. C180 A B90.针对训练 6 如图,点 O 在 ABC 内,且到三边的距离相等若 BOC120,则 tan A的值为(A)训练 6 题图A. B. C. D. 333 32 22【解析】 点 O 到 ABC 三边的距离相等, BO 平分 ABC, CO 平分 ACB. A

9、180( ABC ACB)1802( OBC OCB)1802(180 BOC)1802(180120)60.tan Atan 60 .3一、 选择题1. (2018,天津)cos 30的值为(B)A. B. C. 1 D. 22 32 3【解析】 根据特殊角的三角函数值直接解答即可2. (2018,深圳龙岗区模拟)如果直角三角形的一个锐角是另一个锐角的 4 倍,那么其中的一个锐角的度数是(B)A. 9 B. 18 C. 27 D. 36【解析】 设较小的锐角是 x,则另一个锐角是 4x.则 x4 x90.解得x18.4 x72.所以两个锐角分别是 18和 72.3. (2018,孝感)如图,

10、在 Rt ABC 中, C90, AB10, AC8,则 sin A 的值为5(A)第 3 题图A. B. C. D. 35 45 34 43【解析】 在 Rt ABC 中, AB10, AC8, BC 6.sin AB2 AC2 102 82A .BCAB 610 354. (2018,贵阳)如图, A, B, C 是小正方形的顶点,且每个小正方形的边长为 1,则tan BAC 的值为(B)第 4 题图A. B. 1 C. D. 12 33 3【解析】 如答图,连接 BC.由网格,得 AB BC , AC ,即 AB2 BC2 AC2.5 10 ABC 为等腰直角三角形 BAC45.tan

11、BAC1. 第 4 题答图5. (2018,淄博,导学号 5892921)如图,在 Rt ABC 中, CM 平分 ACB 交 AB 于点 M,过点 M 作 MN BC 交 AC 于点 N,且 MN 平分 AMC.若 AN1,则 BC 的长为(B)第 5 题图A. 4 B. 6 C. 4 D. 83【解析】 在 Rt ABC 中, CM 平分 ACB, MN BC,且 MN 平分 AMC, B AMN NMC, NCM BCM NMC. ACB2 B, NM NC. B30. AN1, MN2. AC AN NC3. BC6.6. (2018,扬州)如图,在 Rt ABC 中, ACB90,

12、CD AB 于点 D, CE 平分 ACD 交AB 于点 E,则下列结论一定成立的是(C)6第 6 题图A. BC EC B. EC BE C. BC BE D. AE EC【解析】 ACB90, CD AB, ACD BCD90, ACD A90. BCD A. CE 平分 ACD, ACE DCE. BEC A ACE, BCE BCD DCE, BEC BCE. BC BE.7. (2018,贺州)如图,在 ABC 中, BAC90, AD BC,垂足为 D, E 是边 BC 的中点, AD ED3,则 BC 的长为(D)第 7 题图A. 3 B. 3 C. 6 D. 62 3 2【解析

13、】 AD ED3, AD BC, ADE 为等腰直角三角形根据勾股定理,得 AE3 . 在 Rt ABC 中, E 为 BC 的中点, AE BC. BC2 AE6 .32 32 212 28. (2018,大同模拟,导学号 5892921)一直角三角形的两边长分别为 6 和 8,则该三角形中较小锐角的正弦值为(C)A. B. C. 或 D. 或35 74 74 35 25 54【解析】 本题分两种情况当斜边长是 8 时,直角三角形的另一直角边长是2 . 较小锐角的正弦值为 .当两直角边长分别是 6 和 8 时,由勾股定理,得82 62 774斜边长为 10.较小锐角的正弦值为 .所以该三角形

14、中较小锐角的正弦值为 或 .35 74 35二、 填空题9. (2018,德州)如图,在 44 的正方形方格图形中,小正方形的顶点称为格点,ABC 的顶点都在格点上,则 BAC 的正弦值是( ).55第 9 题图【解析】 AB23 24 225, AC22 24 220, BC21 22 25, AC2 BC2 AB2. ABC 为直角三角形,且 ACB90.sin BAC .BCAB 5510. (2018,湘潭)九章算术是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图,在 ABC 中, AC

15、B90, AC AB10, BC3,求 AC 的长如果7设 AC x,那么可列方程为 x23 2(10 x)2 .第 10 题图【解析】 AC AB10, AB10 x.在 Rt ABC 中, ACB90, AC2 BC2 AB2,即 x23 2(10 x)2.11. (2018,石家庄裕华区模拟)如图,在 ABC 中, ACB90, A30, BC4,以点 C 为圆心, CB 长为半径作弧,交 AB 于点 D;再分别以点 B 和点 D 为圆心,大于 BD 的12长为半径作弧,两弧相交于点 E,作射线 CE 交 AB 于点 F,则 AF 的长为 6 .第 11 题图【解析】 由作图过程及痕迹,

16、得 CF AB.在 ABC 中, ACB90, A30,BC4, AB2 BC8, CBD60.在 Rt BCF 中, BCF30. BF BC2. AF AB BF826.12三、 解答题12. 如图,沿 AC 方向开山修路为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点 B 取 ABD120, BD520 m, D30,那么另一边的开挖点 E 离 D 多远时,正好使 A, C, E 三点在同一直线上?( 取 1.732,结果取整数)3第 12 题图【思路分析】 根据三角形内角与外角的关系可求出 AED 的度数,再根据勾股定理即可求出 DE 的长解: ABD120, D30, A

17、ED1203090.在 Rt BDE 中, BD520 m, D30, BE260 m. DE 260 450(m)BD2 BE2 3答:另一边的开挖点 E 离 D 约 450 m 时,正好使 A, C, E 三点在同一直线上13. (2018,北京顺义区二模)如图,在四边形 ABCD 中, BCD90, AD DB, E 为 AB的中点, BC DE.(1)求证: BD 平分 ABC;8(2)连接 EC,若 A30, DC ,求 EC 的长3第 13 题图【思路分析】 (1)直接利用直角三角形的性质得出 DE BE AB,再利用 BC DE 得出12 BDE DBC,进而得出答案(2)利用已

18、知得出在 Rt BCD 中, DBC60,又由 DC得出 DB 的长,再在 Rt CDE 中利用勾股定理求出 EC 的长3(1)证明:如答图 AD DB, E 为 AB 的中点, DE BE AB.1212. BC DE,23.13,即 BD 平分 ABC.(2)解:如答图 AD DB, A30,160.3260. BCD90,430. CDE2490.在 Rt BCD 中,360, DC ,3 DB2. DE BE,160, DE DB2. EC .DE2 DC2 4 3 7第 13 题答图14. (2018,保定二模)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小

19、聪以灵感,他惊喜地发现,当两个全等的直角三角形按图或图所示的方式摆放时,都可以用“面积法”来证明,下面是小聪利用图证明勾股定理的过程:将两个全等的直角三角形按图所示摆放,其中 DAB90,求证: a2 b2 c2.证明:连接 DB,过点 D 作 BCD 的 BC 边上的高 DF,则 DF EC b a. S 四边形 ADCB S ACD S ABC b2 ab,且 S 四边形 ADCB S ADB S DCB c2 a(b a),12 12 12 12 b2 ab c2 a(b a)12 12 12 12 a2 b2 c2.请参照上述证法,利用图完成下面的证明将两个全等的直角三角形按图所示摆放

20、,其中 DAB90.求证: a2 b2 c2.9第 14 题图【思路分析】 先连接 BD,过点 B 作 BDE 的 DE 边上的高 BF,则 BF b a,用两种不同的方式表示出 S 五边形 ACBED,两者相等,整理即可得证证明:如答图,连接 BD,过点 B 作 BDE 的 DE 边上的高 BF,则 BF b a. S 五边形 ACBED S ACB S ABE S ADE ab b2 ab,12 12 12且 S 五边形 ACBED S ACB S ABD S BDE ab c2 a(b a),12 12 12 ab b2 ab ab c2 a(b a)12 12 12 12 12 12

21、a2 b2 c2.第 14 题答图1. (2018,温州,导学号 5892921)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成若a3, b4,则该矩形的面积为(B)第 1 题图A. 20 B. 24 C. D. 994 532【解析】 如答图设小正方形的边长为 x. a3, b4, AB347.在 Rt ABC中, AC2 BC2 AB2,即(3 x)2( x4) 27 2.整理,得 x27 x120,即 x27 x12.该矩形的面积为( x3)

22、( x4) x27 x1224.10第 1 题答图2. (2018,天津,导学号 5892921)如图,在边长为 4 的等边三角形 ABC 中, D, E 分别为 AB, BC 的中点, EF AC 于点 F, G 为 EF 的中点,连接 DG,则 DG 的长为( ).192第 2 题图【解析】 如答图,连接 DE.在边长为 4 的等边三角形 ABC 中, D, E 分别为 AB, BC 的中点, DE 是 ABC 的中位线, BD BE EC2. DE2,且 DE AC. EF AC 于点F, C60, FEC30, DEF EFC90. FC EC1. EF .12 22 12 3 G 为

23、 EF 的中点, EG . DG .32 DE2 EG2 192第 2 题答图3. (2018,贵阳)如图,在 ABCD 中, AE 是 BC 边上的高, F 是 DE 的中点, AB 与 AG 关于AE 对称, AE 与 AF 关于 AG 对称(1)求证: AEF 是等边三角形;(2)若 AB2,求 AFD 的面积第 3 题图【思路分析】 (1)先根据 AE 是 BC 边上的高及 AD BC 证 ADE 为直角三角形由 F 是DE 的中点知 AF EF,再结合 AE 与 AF 关于 AG 对称知 AE AF,即可得证(2)记 AG, EF 的交点为 H.由 AEF 是等边三角形且 AB 与

24、AG 关于 AE 对称、 AE 与 AF 关于 AG 对称知 BAE GAE30,据此由 AB2 知 AE AF DF , AH ,从而得出答案332(1)证明: AE 是 BC 边上的高, AE BC.四边形 ABCD 是平行四边形, AD BC. AE AD,即 DAE90.11 F 是 DE 的中点, AF EF DF. AE 与 AF 关于 AG 对称, AE AF. EF AE AF. AEF 是等边三角形(2)解:如答图,记 AG, EF 的交点为 H. AEF 是等边三角形,且 AE 与 AF 关于 AG 对称, EAG30, AG EF. AB 与 AG 关于 AE 对称, BAE GAE30, AEB90. AB2, BE1, DF AF AE .3 EH AE , AH .12 32 32 S AFD DFAH .12 12 3 32 334第 3 题答图

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1