ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:798KB ,
资源ID:1212114      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1212114.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河北省沧州盐山中学2018_2019学年高一数学3月月考试题.doc)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

河北省沧州盐山中学2018_2019学年高一数学3月月考试题.doc

1、- 1 -河北省沧州盐山中学 2018-2019 学年高一数学 3 月月考试题学校:_姓名:_班级:_考号:_一、选择题(本大题共 12 小题,共 60.0 分)1. 在 中,角 A, B, C 所对的边分别为 a, b, c, , ,则 a 等于 A. 3 B. 2 C. 1 D. 2. 在等差数列 中,已知 ,公差 ,则 A. 10 B. 12 C. 14 D. 163. 在等比数列 中,已知 ,则 A. 6 B. 7 C. 8 D. 94. 在 中, a, b, c 分别是内角 A, B, C 所对的边,已知 , , ,则A. B. C. D. 5. 已知 中, , , ,则边 c 等于

2、 A. B. C. D. 56. 记 为等差数列 的前 n 项和 若 , ,则 的公差为 A. 1 B. 2 C. 4 D. 87. 在等比数列 中, , ,则公比 q 为 A. 2 B. 3 C. 4 D. 88. 已知数列 满足 ,若 ,则 等于 A. 1 B. 2 C. 64 D. 1289. 已知等比数列 的公比 ,其前 4 项和 ,则 等于 A. 16 B. 8 C. D. - 2 -10. 已知 中, , ,角 ,则边 A. B. 2 C. 1 D. 11. 已知 a, b, c 是锐角 中 A, B, C 的对边, , , 的面积为 ,则A. 13 B. 8 C. D. 12.

3、若互不相等的实数 a, b, c 成等差数列, c, a, b,成等比数列,且 ,则A. 4 B. 2 C. D. 二、填空题(本大题共 4 小题,共 20.0 分)13. 在 中, , , ,则 _ 14. 的内角 A, B, C 对边分别为 a, b, c,且满足 : : :3:4,则 _ 15. 已知等差数列 中, , ,则 _16. 设等比数列 满足 , ,则 _三、解答题(本大题共 6 小题,共 72.0 分)17. 在 中,角 A, B, C 所对的边分别为 a, b, c, , , ,求 b 边长,及 的值- 3 -18. 已知等差数列 中, ,前 10 项和 求数列 的通项公式

4、 19. 记 为等差数列 的前 n 项和,已知 , 求 的通项公式;求 ,并求 的最小值20. 在 中,角 A, B, C 的对边分别为 a, b, c,且 求角 A 的大小; 若 , ,求 a 的值21. 已知等比数列 中,公比 , , ,求数列 的通项公式及前 9 项和- 4 -22. 已知各项均不相等的等差数列 的前四项和 ,且 , , 成等比数列求数列 的通项公式;设 为数列 的前 n 项和,求 - 5 -盐山中学 18 级三月份月考数学试卷【答案】1. B 2. B 3. C 4. B 5. A 6. C 7. A8. C 9. A 10. C 11. C 12. D13. 14.

5、15. 5 16. 17. 解: , , ,由余弦定理: ,可得: 由正弦弦定理: ,即 ,解得: 18. 解:设数列 的公差为 d,因为 , ,所以 ,解得 , ,所以 ,- 6 -即 19. 解: 等差数列 中, , , ,解得 , ,;, , ,当 时,前 n 项的和 取得最小值为 20. 解: ,由正弦定理可得 ,是三角形内角, ,是三角形内角, , ,由 得: ,由余弦定理可知:, 21. 解:由已知条件得:,由 ,解得 , ,- 7 -, 22. 解: 设公差为 d,则,且 成等比数列, 【解析】1. 【分析】本题考查正弦定理的应用,是基础知识的考查,直接利用正弦定理 列出方程求解

6、即可【解答】解:在 中,角 A, B, C 所对的边分别为 a, b, c, , ,由正弦定理可得 故选 B2. 【分析】利用等差数列通项公式求解 本题考查等差数列的第 12 项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用【解答】- 8 -解: 等差数列 , ,公差 ,故选 B3. 【分析】利用等比数列的通项公式求解 本题考查等比数列的两项积的求法,是基础题,解题时要认真审题,注意等比数列性质的合理运用【解答】解: 在等比数列 中, ,故选 C4. 【分析】本题考查了解三角形的有关问题,关键掌握正弦定理,属于基础题方法一,根据直角三角形的有关知识即可求出,方法二,根据正弦定

7、理即可求出【解答】解:法一:过点 C 作 , , ,法二: , ,- 9 -由正弦定理可得 ,故选 B5. 【分析】本题考查余弦定理,由已知利用余弦定理即可计算求值得解【解答】解: , , ,由余弦定理可得: 故选 A6. 【分析】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用利用等差数列通项公式及前 n 项和公式列出方程组,求出首项和公差,由此能求出 的公差【解答】解: 为等差数列 的前 n 项和, , ,解得 , ,的公差为 4故选 C7. 【分析】本题主要考查等比数列通项公式的应用,同时也考查了学生的计算能力【解答】解:由等比数列通项公式可得:

8、- 10 -解得 故选 A8. 【分析】数列 满足 ,可得公比,再利用通项公式即可得出 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于基础题【解答】解:数列 满足 , 公比为 ,则 ,解得 故选 C9. 【分析】由题意结合等比数列的求和公式可得 的方程,解方程可得 ,由通项公式可得答案本题考查等比数列的通项公式和求和公式的运用,考查运算能力,属于基础题【解答】解:由等比数列的求和公式可得 ,解得等比数列 的首项 ,则 ,故选 10. 【分析】本题主要考查了余弦定理在解三角形中的应用,属于基础题【解答】解: , ,角 ,由余弦定理 ,- 11 -可得 ,即 ,解得 故选 C11.

9、【分析】此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键利用三角形面积公式列出关系式,将已知面积与 a, c 的值代入求出 的值,再由三角形为锐角三角形求出 B 的度数,根据余弦定理求出 b 的值即可【解答】解: ,为锐角三角形,由余弦定理得: ,解得: ,故选 C12. 基本量法,解方程13. 【分析】本题主要考查余弦定理的应用,根据三角函数的值求角,难度不大;在 中,由 , , ,利用余弦定理可得 的值,从而得到 A 的值【解答】- 12 -在 中, , , ,由余弦定理可得 ,又 ,故答案为 14. 【分析】利用正弦定理即可得出 本题考查了正弦

10、定理的应用,属于基础题【解答】解: : : :3:4,由正弦定理可得: a: b: :3:4,故答案为 15. 【分析】本题考查了等差数列的性质的运用,是基础题根据给出的首项和前三项的和,运用等差数列的性质可求 ,再次利用等差数列的性质可求的值【解答】解: 数列 是等差数列, ,又 ,- 13 -故答案为 516. 解:设等比数列 的公比为 q, , , ,解得 , 则 故答案为: 设等比数列 的公比为 q,由 , ,可得: ,解出即可得出本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题17. 本题考查了正余弦定理的灵活运用和计算能力 属于基础题先利用余弦定理求出 b 的长,

11、再根据正弦定理可得 的值18. 利用等差数列的通项公式、前 n 项和公式列出方程组,求出首项和公差,由此能求出数列 的通项公式 本题考查等差数列的通项公式的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用19. 根据 , ,可得 , ,求出等差数列 的公差,然后求出 即可;由 , , ,得,由此可求出 以及 的最小值本题主要考查了等差数列的通项公式,考查了等差数列的前 n 项的和公式,属于中档题20. 本题考查正弦定理以及余弦定理的应用,三角形的解法,考查计算能力 利用正弦定理化简已知条件,通过三角形内角求解 A 的大小即可 直接利用余弦定理求解即可- 14 -21. 本题考查数列 的通项公式及前 9 项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用由已知条件利用等比数列的通项公式求出首项和公比,由此能求出数列 的通项公式及前9 项和22. 本题考查等差数列的通项与求和,考查裂项法的运用,考查学生的计算能力,属于中档题设公差为 d,利用 ,且 , , 成等比数列,建立方程,即可求得首项与公差,从而可得数列 的通项公式;利用裂项法,可求数列 的前 n 项和23.24.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1