ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:199KB ,
资源ID:1370134      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1370134.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【学历类职业资格】专升本高等数学(二)-定积分及答案解析.doc)为本站会员(towelfact221)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【学历类职业资格】专升本高等数学(二)-定积分及答案解析.doc

1、专升本高等数学(二)-定积分及答案解析(总分:100.00,做题时间:90 分钟)一、B选择题/B(总题数:10,分数:10.00)1.设 f(x)为a,b上的连续函数,则 (分数:1.00)A.B.C.D.2.等于_ Aarctanx B Carctanb-arctana D0 (分数:1.00)A.B.C.D.3.下列各式中正确的是_ A B C (分数:1.00)A.B.C.D.4.变上限积分 (分数:1.00)A.B.C.D.5.极限设 (分数:1.00)A.B.C.D.6.设 (分数:1.00)A.B.C.D.7.设函数 f(x)在0,1上连续,令 t=2x,则 等于_ A B C

2、D (分数:1.00)A.B.C.D.8.设函数 f(x)=x3+x,则 的值等于_A0 B8 C D (分数:1.00)A.B.C.D.9.下列定积分等于零的是_ A B C D (分数:1.00)A.B.C.D.10.下列广义积分收敛的是_ A B C D (分数:1.00)A.B.C.D.二、B填空题/B(总题数:10,分数:10.00)11.设 (分数:1.00)填空项 1:_12.若 (分数:1.00)填空项 1:_13.设 (分数:1.00)填空项 1:_14.设 f(x)在积分区间上连续,则 (分数:1.00)填空项 1:_15.定积分 (分数:1.00)填空项 1:_16.定积

3、分 (分数:1.00)填空项 1:_17.定积分 (分数:1.00)填空项 1:_18.定积分 (分数:1.00)填空项 1:_19.若 (分数:1.00)填空项 1:_20.= 1。 (分数:1.00)填空项 1:_三、B解答题/B(总题数:6,分数:80.00)求下列不定积分(分数:9.00)(1).计算 (分数:3.00)_(2).求由方程 (分数:3.00)_(3).设 (分数:3.00)_计算下列定积分(分数:15.00)(1).计算 (分数:3.00)_(2).计算 (分数:3.00)_(3).计算 (分数:3.00)_(4).计算 (分数:3.00)_(5).计算 (分数:3.0

4、0)_计算下列定积分(分数:6.00)(1).设分段函数 计算 (分数:3.00)_(2).计算 (分数:3.00)_求下列不定积分(分数:12.00)(1).计算 (分数:3.00)_(2).计算 (分数:3.00)_(3).计算 (分数:3.00)_(4).计算 (分数:3.00)_证明题(分数:12.00)(1).设 f(x)是在区间-a,a上连续的偶函数,证明 (分数:3.00)_(2).证明 (分数:3.00)_(3).设 f(x)在区间0,1上连续,证明 (分数:3.00)_(4).设函数 f(x)满足 ,证明 (分数:3.00)_求解下列各题(分数:26.00)(1).求由直线

5、y=x及抛物线 y=x2所围成的平面图形的面积。(分数:3.25)_(2).求曲线 y=x3和 (分数:3.25)_(3).求由抛物线 y=1-x2及其在点(1,0)处的切线和 y轴所围成的平面图形的面积。(分数:3.25)_(4).求由曲线 y=ex和直线 y=x,x=0,x=1 所围成的平面图形的面积。(分数:3.25)_(5).求由曲线 y2=x及直线 y=x-2所围成的平面图形的面积。(分数:3.25)_(6).求由直线 y=2x,y=x,x=2,x=4 所围成的平面图形绕 x轴旋转一周所得旋转体的体积 Vx。(分数:3.25)_(7).()求由直线 x=0,x=2,y=0 及抛物线

6、y=-x2+1所围成的图形的面积 S;()求上述平面图形绕 x轴旋转一周所得旋转体的体积 Vx。(分数:3.25)_(8).曲线 y=x2,直线 y=a,x=0 及 x=0及 x=1围成一个平面图形,其中 0a1。()求图中阴影部分的面积 S;()问 a为何值时,S 的取值最小,并求出此最小值。(分数:3.25)_专升本高等数学(二)-定积分答案解析(总分:100.00,做题时间:90 分钟)一、B选择题/B(总题数:10,分数:10.00)1.设 f(x)为a,b上的连续函数,则 (分数:1.00)A.B. C.D.解析:解析 由定积分的定义可知,定积分*是一个数值,它仅与积分区间a,b和被

7、积函数 f(x)有关,而与积分变量符号无关,即*,所以*。2.等于_ Aarctanx B Carctanb-arctana D0 (分数:1.00)A.B.C.D. 解析:解析 根据定积分的定义,定积分*是常数值由于常数的导数等于零,所以*。3.下列各式中正确的是_ A B C (分数:1.00)A.B. C.D.解析:解析 在区间0,1内,xx 2,*,根据定积分的单调性,*。4.变上限积分 (分数:1.00)A.B.C. D.解析:解析 由变上限定积分求导定理,得*,所以变上限积分*是 f(x)的一个原函数。5.极限设 (分数:1.00)A.B.C. D.解析:解析 用洛必达法则求*型未

8、定式的极限,对分子、分母求导时须用到变上限定积分求导定理,即有*。6.设 (分数:1.00)A.B.C.D. 解析:解析 等式两边同时对 x求导*,由变上限定积分求导定理得 f(x)=a2xlna(2x)=2a2xlna。7.设函数 f(x)在0,1上连续,令 t=2x,则 等于_ A B C D (分数:1.00)A.B.C.D. 解析:解析 由于作变量代换 t=2x,则*,当 x=0时,t=0;当 x=1时,t=2。则有*。8.设函数 f(x)=x3+x,则 的值等于_A0 B8 C D (分数:1.00)A. B.C.D.解析:解析 f(x)=x 3+x在区间-2,2上是连续的奇函数,则

9、*。9.下列定积分等于零的是_ A B C D (分数:1.00)A.B.C. D.解析:解析 选项 C中,由于被积函数 f(x)=x+sinx在区间-1,1上是连续的奇函数,所以有*。10.下列广义积分收敛的是_ A B C D (分数:1.00)A.B. C.D.解析:解析 由无穷区间上广义积分收敛性的定义可知, *二、B填空题/B(总题数:10,分数:10.00)11.设 (分数:1.00)填空项 1:_ (正确答案:tanx)解析:解析 由变上限定积分求导定理,有*。12.若 (分数:1.00)填空项 1:_ (正确答案:*)解析:解析 由变上限定积分求导定理,有 *13.设 (分数:

10、1.00)填空项 1:_ (正确答案:arctanx)解析:解析 由变上限定积分求导定理,有 *14.设 f(x)在积分区间上连续,则 (分数:1.00)填空项 1:_ (正确答案:0)解析:解析 由于被积函数 x2f(x)-f(-x)在积分区间-a,a是连续的奇数,所以*。15.定积分 (分数:1.00)填空项 1:_ (正确答案:0)解析:解析 由于被积函数 f(x)=xcosx在积分区间*是连续的奇数,所以*。16.定积分 (分数:1.00)填空项 1:_ (正确答案:0)解析:解析 由于被积函数*在积分区间*是连续的奇函数,所以*。17.定积分 (分数:1.00)填空项 1:_ (正确

11、答案:*)解析:解析 由奇、偶函数在对称区间上的定积分性质可得 *。18.定积分 (分数:1.00)填空项 1:_ (正确答案:0)解析:解析 由于被积函数 f(x)=xcosx在积分区间-,是连续的奇函数,所以*。19.若 (分数:1.00)填空项 1:_ (正确答案:e)解析:解析 *,解得 b=e。20.= 1。 (分数:1.00)填空项 1:_ (正确答案:*)解析:解析 *。三、B解答题/B(总题数:6,分数:80.00)求下列不定积分(分数:9.00)(1).计算 (分数:3.00)_正确答案:(*。)解析:(2).求由方程 (分数:3.00)_正确答案:(求二元方程确定的一元隐函

12、数的微分时,须用到变上限定积分求导定理的推论。 解法(公式法)方程两边对 x求导 * 解法(直接微分法)*, 解得*。)解析:(3).设 (分数:3.00)_正确答案:(本题为将变上限定积分求导定理应用于讨论函数的连续性。 * 因为 f(0-0)f(0+0),所以函数 f(x)在点 x=0处不连续,x=0 为函数 f(x)的间断点。)解析:计算下列定积分(分数:15.00)(1).计算 (分数:3.00)_正确答案:(*)解析:(2).计算 (分数:3.00)_正确答案:(解法:作变量代换,令 cosx=t,则 sinxdx=-dt,当 x=0时,t=1,当*时,t=0。 * 解法:连续两次凑

13、微分,使用凑微分公式* *)解析:(3).计算 (分数:3.00)_正确答案:(作变量代换,令*,则 dx=2tdt,当 x=0时,t=0;当 x=4时,t=2。 *)解析:(4).计算 (分数:3.00)_正确答案:(作变量代换,令*,则 x=ln(1+t2),*,当 x=0时,t=0;当 x=ln2时,t=1。*)解析:(5).计算 (分数:3.00)_正确答案:(本题主要考查用换元积分法计算定积分。解法:作变量代换,令 4-ex=t,则 x=ln(4-t),*,当 x=0时,t=3;当 x=1时,t=4-e。*解法:凑微分法,使用凑微分公式 exdx=-d(4-ex),*)解析:计算下列

14、定积分(分数:6.00)(1).设分段函数 计算 (分数:3.00)_正确答案:(用定积分的积分区间可加性求分段函数的定积分。 * *)解析:(2).计算 (分数:3.00)_正确答案:(用定积分的积分区间可加性求分段函数的定积分。 * *)解析:求下列不定积分(分数:12.00)(1).计算 (分数:3.00)_正确答案:(*)解析:(2).计算 (分数:3.00)_正确答案:(*)解析:(3).计算 (分数:3.00)_正确答案:(*)解析:(4).计算 (分数:3.00)_正确答案:(本小题主要考查用计算广义积分。 * *)解析:证明题(分数:12.00)(1).设 f(x)是在区间-a

15、,a上连续的偶函数,证明 (分数:3.00)_正确答案:(证明:由于 f(x)是区间-a,a上连续的偶函数,则有 f(-x)=f(x) * 对于定积分*,作变量代换,令 x=-t,得 dx=-dt。 当 x=-a时,t=a;当 x=0时,t=0,则有 *。 所以*。)解析:(2).证明 (分数:3.00)_正确答案:(证明:作变量代换,令 1-x=t,得 x=1-t,dx=-dx, 当 x=0时,t=1;当 x=1时,t=0,则有 *。)解析:(3).设 f(x)在区间0,1上连续,证明 (分数:3.00)_正确答案:(证明:作变换代换,令 1-2x=t,得*。 当 x=0时,t=1;当*时,

16、t=0。 则有*。)解析:(4).设函数 f(x)满足 ,证明 (分数:3.00)_正确答案:(证明:令*,由已知,得 f(x)=lnx-A, *。 即*,得 eA=1,*, 即*。)解析:求解下列各题(分数:26.00)(1).求由直线 y=x及抛物线 y=x2所围成的平面图形的面积。(分数:3.25)_正确答案:(画出图形(如下图所示),解方程组*,得 x1=0,x 2=1则平面图形的面积为*)解析:(2).求曲线 y=x3和 (分数:3.25)_正确答案:(画出图形(如图所示),解方程组*得 x1=0,x 2=1。*则平面图形的面积为*。)解析:(3).求由抛物线 y=1-x2及其在点(

17、1,0)处的切线和 y轴所围成的平面图形的面积。(分数:3.25)_正确答案:(画出图形(如图所示),y=-2x,y| x=1=-2。*过点(1,0)处的切线方程为 y=-2(x-1)。则抛物线 y=1-x2及其在点(1,0)处的切线 y=-2(x-1)和 y轴所围成的平面图形的面积为*)解析:(4).求由曲线 y=ex和直线 y=x,x=0,x=1 所围成的平面图形的面积。(分数:3.25)_正确答案:(画出图形(如下图所示),所求平面图形的面积 * *)解析:(5).求由曲线 y2=x及直线 y=x-2所围成的平面图形的面积。(分数:3.25)_正确答案:(画出图形(如图所示),解方程组*

18、得两曲线的交点 A(1,-1),B(4,2)。则曲线 y2=x及直线 y=x-2所围成的平面图形的面积*另解*)解析:(6).求由直线 y=2x,y=x,x=2,x=4 所围成的平面图形绕 x轴旋转一周所得旋转体的体积 Vx。(分数:3.25)_正确答案:(画出图形(如图所示),所求旋转体的体积 * *)解析:(7).()求由直线 x=0,x=2,y=0 及抛物线 y=-x2+1所围成的图形的面积 S;()求上述平面图形绕 x轴旋转一周所得旋转体的体积 Vx。(分数:3.25)_正确答案:(画出图形(如下图所示) * ()* ()*)解析:(8).曲线 y=x2,直线 y=a,x=0 及 x=0及 x=1围成一个平面图形,其中 0a1。()求图中阴影部分的面积 S;()问 a为何值时,S 的取值最小,并求出此最小值。(分数:3.25)_正确答案:(如图所示,本题是用定积分求平面图形的面积及用导数求函数的最小值的综合应用题。 * ()解方程组 由*,解得*, 则有*。 ()*, 令 S(a)=0,得唯一驻点*。 *为极小值点。由于驻点唯一,因此极小值点也为最小值点,从而最小值为*。)解析:

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1