ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:179.50KB ,
资源ID:1394025      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1394025.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学一(常微分方程)-试卷4及答案解析.doc)为本站会员(hopesteam270)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学一(常微分方程)-试卷4及答案解析.doc

1、考研数学一(常微分方程)-试卷 4 及答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.微分方程 y“+y“+y= 的一个特解应具有形式(其中 a,b 为常数) ( ) (分数:2.00)A.B.C.D.3.方程(3+2y)xdx+(x 2 -2)dy=0 的类型是 ( )(分数:2.00)A.只属于可分离变量型B.属于齐次型方程C.只属于全微分方程D.兼属可分离变量型、一阶线性方程和全微分方程4.微分方程 y“+2y“+y=shx 的一个特解应具有形式(其中 a,b

2、 为常数) ( )(分数:2.00)A.ashxB.achxC.ax 2 e -x +be xD.axe -x +be x5.设 f(x)连续,且满足 (分数:2.00)A.e x in 2B.e 2x ln2C.e x +ln2D.e 2x +ln26.设 f(x),f“(x)为已知的连续函数,则方程 y“+f“(x)y=f(x)f“(x)的通解是( )(分数:2.00)A.y=f(x)+Ce -f(x)B.y=f(x)+1+Ce -f(x)C.y=f(x)-C+Ce -f(x)D.y=f(x)-1+Ce -f(x)7.方程 y (4) -2y“-3y“=e -3x -2e -x +x 的特

3、解形式(其中 a,b,c,d 为常数)是 ( )(分数:2.00)A.axe -3x +bxe -x +cx 3B.ae -3x +bxe -x +cx+dC.ae -3x +bxe -x +cx 3 +dx 2D.axe -3x +be -x +cx 3 +dx8.已知 y 1 =xe x +e 2x 和 y 2 =xe x +e -x 是二阶常系数非齐次线性微分方程的两个解,则此方程为 ( )(分数:2.00)A.y“-2y“+y=e 2xB.y“-y“-2y=xe xC.y“-y“-2y=e x -2xe xD.y“-y=e 2x二、填空题(总题数:8,分数:16.00)9.以 y=co

4、s2x+sin2x 为一个特解的二阶常系数齐次线性微分方程是 1(分数:2.00)填空项 1:_10.微分方程(1-x 2 )y-xy“=0 满足初值条件 y(1)=1 的特解是 1(分数:2.00)填空项 1:_11.微分方程 (分数:2.00)填空项 1:_12.微分方程 y“-2y“=x 2 +e 2x +1 的待定系数法确定的特解形式(不必求出系数)是 1(分数:2.00)填空项 1:_13.特征根为 r 1 =0, (分数:2.00)填空项 1:_14.已知 (分数:2.00)填空项 1:_15.微分方程 (分数:2.00)填空项 1:_16.以 y=7e 3x +2x 为一个特解的

5、三阶常系数齐次线性微分方程是 1(分数:2.00)填空项 1:_三、解答题(总题数:14,分数:28.00)17.解答题解答应写出文字说明、证明过程或演算步骤。_18.求微分方程 (分数:2.00)_19.求微分方程 y“+2y“+2y=2e -x cos 2 (分数:2.00)_20.求方程 (分数:2.00)_21.求 y“-y=e x 的通解(分数:2.00)_22.设函数 f(u)有连续的一阶导数 f(2)=1,且函数 满足 (分数:2.00)_23.设 z=z(u,v)具有二阶连续偏导数,且 z=z(z-2y,x+3y)满足 (分数:2.00)_24.利用变换 y=f(e x )求微

6、分方程 y“-(2e x +1)y“+e 2x y=e 3x 的通解(分数:2.00)_25.用 x=e l 化简微分方程 (分数:2.00)_26.求解 (分数:2.00)_27.求解微分方程 (分数:2.00)_设 L 是一条平面曲线,其上任意一点 P(x,y)(x0)到坐标原点的距离恒等于该点处的切线在 y 轴上的截距,且 L 经过点 (分数:4.00)(1).试求曲线 L 的方程;(分数:2.00)_(2).求 L 位于第一象限部分的一条切线,使该切线与 L 以及两坐标轴所围图形的面积最小(分数:2.00)_28.设函数 y(x)(x0)二阶可导且 y“(x)0,y(0)=1过曲线 y

7、=y(x)上任意一点 P(x,y)作该曲线的切线及到 z 轴的垂线,上述两直线与 z 轴所围成的三角形的面积记为 S 1 ,区间0,x上以 y=y(x)为曲边的曲边梯形面积记为 S 2 ,并设 2S 1 -S 2 恒为 1,求此曲线 y=y(x)的方程(分数:2.00)_29.位于上半平面向上凹的曲线 y=y(x)在点(0,1)处的切线斜率为 0,在点(2,2)处的切线斜率为 1已知曲线上任一点处的曲率半径与 (分数:2.00)_考研数学一(常微分方程)-试卷 4 答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只

8、有一个选项符合题目要求。(分数:2.00)_解析:2.微分方程 y“+y“+y= 的一个特解应具有形式(其中 a,b 为常数) ( ) (分数:2.00)A.B.C. D.解析:解析:特征方程 r 2 +r+1=0,特征根为,r 1,2 = 是特征根,所以特解的形式为 3.方程(3+2y)xdx+(x 2 -2)dy=0 的类型是 ( )(分数:2.00)A.只属于可分离变量型B.属于齐次型方程C.只属于全微分方程D.兼属可分离变量型、一阶线性方程和全微分方程 解析:解析:原方程关于 x 和 y 不齐次但极易分离变量,也可化为 y 的一阶线性方程又满足全微分方程条件 P“ y =2x=Q“ x

9、 故选项(A),(B),(C)均不正确,而(D)正确4.微分方程 y“+2y“+y=shx 的一个特解应具有形式(其中 a,b 为常数) ( )(分数:2.00)A.ashxB.achxC.ax 2 e -x +be x D.axe -x +be x解析:解析:特征方程为 r 2 +2r+1=0,r=-1 为二重特征根,而 5.设 f(x)连续,且满足 (分数:2.00)A.e x in 2B.e 2x ln2 C.e x +ln2D.e 2x +ln2解析:解析:原方程求导得 f“(x)=2f(x),即 6.设 f(x),f“(x)为已知的连续函数,则方程 y“+f“(x)y=f(x)f“(

10、x)的通解是( )(分数:2.00)A.y=f(x)+Ce -f(x)B.y=f(x)+1+Ce -f(x)C.y=f(x)-C+Ce -f(x)D.y=f(x)-1+Ce -f(x) 解析:解析:由一阶线性方程的通解公式得 y=e -f“(x)dx C+f(x)f“(x)e f“(x)dx =e -f(x) C+f(x)de f(x) =Ce -f(x) +f(x)-1,其中 C 为任意常数7.方程 y (4) -2y“-3y“=e -3x -2e -x +x 的特解形式(其中 a,b,c,d 为常数)是 ( )(分数:2.00)A.axe -3x +bxe -x +cx 3B.ae -3x

11、 +bxe -x +cx+dC.ae -3x +bxe -x +cx 3 +dx 2 D.axe -3x +be -x +cx 3 +dx解析:解析:特征方程 r 2 (r 2 -2r-3)=0,特征根为 r 1 =3,r 2 =-1,r 3 =r 4 =0,对于 f 1 =e, 1 =-3 非特征根,y* 1 =ae -3x ;对于 f 2 =-2e -x , 2 =-1 是特征根,y* 2 =bxe -x ;对于 f 3 =x, 3 =0 是二重特征根,y* 3 =x 2 (cx+d),所以特解 y*=y* 1 +y* 2 +y* 3 =ae -3x +bxe -x +cx 3 +dx 2

12、8.已知 y 1 =xe x +e 2x 和 y 2 =xe x +e -x 是二阶常系数非齐次线性微分方程的两个解,则此方程为 ( )(分数:2.00)A.y“-2y“+y=e 2xB.y“-y“-2y=xe xC.y“-y“-2y=e x -2xe x D.y“-y=e 2x解析:解析:非齐次线性方程两解之差必为对应齐次方程之解,由 y 1 -y 2 =e 2x -e -x 及解的结构定理知对应齐次方程通解为 y=C 1 e 2x +C 2 e -x ,故特征根 r 1 =2,r 2 =-1对应齐次线性方程为 y“-y“-2y=0 再由特解 y*=xe x 知非齐次项 f(x)=y*“-y

13、*“-2y*=e x -2xe x ,于是所求方程为 y“-y“-2y=e x -2xe x二、填空题(总题数:8,分数:16.00)9.以 y=cos2x+sin2x 为一个特解的二阶常系数齐次线性微分方程是 1(分数:2.00)填空项 1:_ (正确答案:正确答案:y“+4y=0)解析:解析:由特解 y=cos2x+sin2x 知特征根为 r 1,2 =2i,特征方程是 r 2 +4=0,其对应方程即y“+4y=010.微分方程(1-x 2 )y-xy“=0 满足初值条件 y(1)=1 的特解是 1(分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:原方程化为 积分得通

14、解 由初值 y(1)=1 解出 C=11.微分方程 (分数:2.00)填空项 1:_ (正确答案:正确答案: )解析:解析:12.微分方程 y“-2y“=x 2 +e 2x +1 的待定系数法确定的特解形式(不必求出系数)是 1(分数:2.00)填空项 1:_ (正确答案:正确答案:y*=x(Ax 2 +Bx+C)+Dxe 2x)解析:解析:特征方程为 r 2 -2r=0,特征根 r 1 =0,r 2 =2 对 f 1 =x 2 +1, 1 =0 是特征根,所以y* 1 =x(Ax 2 +Bx+C) 对 f 2 =e 2x , 2 =2 也是特征根,故有 y* 2 =Dxe 2x 从而 y*如

15、上13.特征根为 r 1 =0, (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:特征方程为 即 r 3 -r 2 + 14.已知 (分数:2.00)填空项 1:_ (正确答案:正确答案:Cx+2,其中 C 为任意常数)解析:解析:将所给方程两边同乘以 x,得 令 u=tx,则上式变为 两边对 x 求导得15.微分方程 (分数:2.00)填空项 1:_ (正确答案:正确答案:y=C 1 x 5 +C 2 x 3 +C 3 x 2 +C 4 x+C 5 ,其中C 1 ,C 2 ,C 3 ,C 4 ,C 5 为任意常数)解析:解析:令 u= 则方程降阶为 u 的一阶方程16

16、.以 y=7e 3x +2x 为一个特解的三阶常系数齐次线性微分方程是 1(分数:2.00)填空项 1:_ (正确答案:正确答案:y“-3y“=0)解析:解析:由特解 y=7e 3x +2x 知特征根为 r 1 =3,r 2 =r 3 =0(二重根)特征方程为 r 3 -3r 2 =0,相应齐次线性方程即为 y“-3y“=0三、解答题(总题数:14,分数:28.00)17.解答题解答应写出文字说明、证明过程或演算步骤。_解析:18.求微分方程 (分数:2.00)_正确答案:(正确答案:这是 y“=f(y,y“)型的可降阶二阶方程,按典型步骤去做即可 令 y“=p,有 ,原方程化为 以下进行讨论

17、y0 显然是原方程的一个解以下设 y0,于是式可改写为 当 C 1 0 时,由式得 当 C 1 =0 时,由式得 x+C 2 =-y -1 ; 当 C 1 0 时,由式得x+C 2 = )解析:19.求微分方程 y“+2y“+2y=2e -x cos 2 (分数:2.00)_正确答案:(正确答案:应先用三角公式将自由项写成 e -x +e -x cosx,然后再用叠加原理用待定系数法求特解 对应的齐次方程的通解为 y=(C 1 cosx+C 2 sinx)e -x 为求原方程的一个特解,将自由项分成两项:e -x - ,e -x cosx,分别考虑 y“+2y“+2y=e -x , 与 y“+

18、2y“+2y=e -x cosx 对于,令 y* 1 =Ae -x , 代入可求得 A=1,从而得 y* 1 =e -x 对于,令 y* 2 =xe -x (Bcosx+Csinx), 代入可求得 B=0,C= 由叠加原理,得原方程的通解为 y=Y+y* 1 +y* 2 =e -x (C 1 cosx+C 2 sinx)+e -x + )解析:20.求方程 (分数:2.00)_正确答案:(正确答案:此为欧拉方程,按解欧拉方程的办法解之 设 x0,令 x=e t ,有 t=lnx,经计算化原方程为 得通解为 设 x0,令 x=-u,原方程化为 y 关于 u 的方程 合并两种情形得原方程的通解为

19、)解析:21.求 y“-y=e x 的通解(分数:2.00)_正确答案:(正确答案:自由项带绝对值,为分段函数,所以应将该方程按区间(-,0)0,+)分成两个方程,分别求解由于 y“=y+e x 在 x=0 处具有二阶连续导数,所以求出解之后,在 x=0 处拼接成二阶导数连续,便得原方程的通解 当 x0 时,方程为 y“-y=e x , 求得通解 当 x0 时,方程为 y“-y=e -x , 求得通解 因为原方程的解 y(x)在 x=0 处连续且 y“(x)也连续,据此,有 )解析:22.设函数 f(u)有连续的一阶导数 f(2)=1,且函数 满足 (分数:2.00)_正确答案:(正确答案:将

20、 z= 代入式,注意到厂中的变元实际是一元 ,所以最终有可能化为含有关于 f(u)的常微分方程 代入题中式,得 f“(u)(1-u 2 )+2f(u)=u-u 3 , 其中 f(u)=u,当 u1 初值条件是 u=2 时 f=1微分方程的解应该是 u 的连续函数,由于初值条件给在 u=2 处,所以 f 的连续区间应是包含 u=2 在内的一个开区间 解式得通解 再以 f(2)=1 代入,得 C=-3,从而得 )解析:23.设 z=z(u,v)具有二阶连续偏导数,且 z=z(z-2y,x+3y)满足 (分数:2.00)_正确答案:(正确答案:以 z=z(u,v),u-x-2y,v=x+3y 代入式

21、,得到 z(u,v)应该满足的微分方程,也许这个方程能用常微分方程的办法解之 它可以看成一个常微分方程(其中视 v 为常数),解得, 其中 (v)为具有连续导数的 v 的任意函数再由 )解析:24.利用变换 y=f(e x )求微分方程 y“-(2e x +1)y“+e 2x y=e 3x 的通解(分数:2.00)_正确答案:(正确答案:令 t=e x ,y=f(t) y“=f“(t).e x =tf“(t), y“=tf“(t)“ x =e x f“(t)+tf“(t).e x =tf“(t)+t 2 f“(t),代入方程得 t 2 f“(t)+tf“(t)-(2t+1)tf“(t)+t 2

22、 f(t)=t 3 ,即f“(t)-2f“(t)+f(t)=t 解得 f(t)=(C+C 2 t)e t +t+2,所以 y“-(2e x +1)y“+e 2x y=e 3x 的通解为 y=(C 1 +C 2 e x ) )解析:25.用 x=e l 化简微分方程 (分数:2.00)_正确答案:(正确答案:本题考查在已有提示下化简微分方程、二阶常系数线性微分方程的求解,是一道具有一定计算量的综合题 )解析:26.求解 (分数:2.00)_正确答案:(正确答案:齐次方程 y“+2y“+5y=0 )解析:27.求解微分方程 (分数:2.00)_正确答案:(正确答案:欲求解的方程是欧拉方程,令 1+

23、x=e t ,则由复合函数的求导法则有 把它们代入原方程,则原方程化为常系数线性齐次微分方程 )解析:设 L 是一条平面曲线,其上任意一点 P(x,y)(x0)到坐标原点的距离恒等于该点处的切线在 y 轴上的截距,且 L 经过点 (分数:4.00)(1).试求曲线 L 的方程;(分数:2.00)_正确答案:(正确答案:设曲线 L 过点 P(x,y)的切线方程为 Y-Y=y“(X-x)令 X=0,则得该切线在 y 轴上的截距为 y-xy“ 由题设知 由 L 经过点 于是 L 方程为 )解析:(2).求 L 位于第一象限部分的一条切线,使该切线与 L 以及两坐标轴所围图形的面积最小(分数:2.00

24、)_正确答案:(正确答案:设第一象限内曲线 y= -x 2 在点 P(x,y)处的切线方程为 令 S“(x)=0,解得 当 0x 内的唯一极小值点,即最小值点,于是所求切线为 Y= 即 )解析:28.设函数 y(x)(x0)二阶可导且 y“(x)0,y(0)=1过曲线 y=y(x)上任意一点 P(x,y)作该曲线的切线及到 z 轴的垂线,上述两直线与 z 轴所围成的三角形的面积记为 S 1 ,区间0,x上以 y=y(x)为曲边的曲边梯形面积记为 S 2 ,并设 2S 1 -S 2 恒为 1,求此曲线 y=y(x)的方程(分数:2.00)_正确答案:(正确答案:曲线 y=y(x)上点 P(x,y

25、)处的切线方程为 Y-y=y“(x)(X-x),它与 x 轴的交点为 N 由于 y“(x)0,y(0)=1,从而 y(x)0,于是 两边对 x 求导得 ,即 yy“=(y“) 2 令p=y“,则上述方程可化为 )解析:29.位于上半平面向上凹的曲线 y=y(x)在点(0,1)处的切线斜率为 0,在点(2,2)处的切线斜率为 1已知曲线上任一点处的曲率半径与 (分数:2.00)_正确答案:(正确答案:由已知,有 y(0)=1,y“(0)=0,y(2)=2,y“(2)=1, 又 即 (因为曲线向上凹,所以,y“0) 令 y“=p,y“=pp“,有 代入 y(0)=1,y“(0)=0,y(2)=2,y“(2)=1,得k=2,C=0,有 代入 y(0)=1,C 1 =0,即 )解析:

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1