ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:181KB ,
资源ID:1394787      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1394787.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学三-413 (1)及答案解析.doc)为本站会员(visitstep340)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学三-413 (1)及答案解析.doc

1、考研数学三-413 (1)及答案解析(总分:100.00,做题时间:90 分钟)一、解答题(总题数:21,分数:100.00)设 (分数:8.00)(1). (分数:4.00)_(2). (分数:4.00)_1.求幂级数 (分数:4.00)_2.求幂级数 (分数:4.00)_3.求幂级数 (分数:4.00)_4.求幂级数 (分数:4.00)_5.求幂级数 (分数:4.00)_6.求幂级数 (分数:4.00)_7.求幂级数 (分数:4.00)_8.求幂级数 (分数:4.00)_9.求幂级数 (分数:4.00)_10.求幂级数 (分数:4.00)_11.求幂级数 (分数:4.00)_12.求幂级数

2、 (分数:4.00)_13.求级数 (分数:4.00)_14.求幂级数 (分数:4.00)_(1).验证 (分数:4.00)_(2).求级数 (分数:4.00)_15.将 f(x)=arctanx 展开成 x 的幂级数 (分数:4.00)_16.将 (分数:4.00)_17.将 f(x)=lnx 展开成 x-2 的幂级数 (分数:4.00)_18.将 (分数:4.00)_设有幂级数 (分数:12.00)(1).求该幂级数的收敛域;(分数:4.00)_(2).证明此幂级数满足微分方程 y“-y=-1,(分数:4.00)_(3).求此幂级数的和函数(分数:4.00)_考研数学三-413 (1)答案

3、解析(总分:100.00,做题时间:90 分钟)一、解答题(总题数:21,分数:100.00)设 (分数:8.00)(1). (分数:4.00)_正确答案:()解析:证明 取 0 =1,由 根据极限的定义,存在 N0,当 nN 时, 即 0a n b n ,由 收敛得 收敛(收敛级数去掉有限项不改变敛散性),由比较审敛法得 收敛,从而 (2). (分数:4.00)_正确答案:()解析:证明 根据(1),当 nN 时,有 0a n b n ,因为 发散,所以 发散,由比较审敛法, 发散,进一步得 1.求幂级数 (分数:4.00)_正确答案:()解析:解 由 得收敛半径为 R=1, 当 x=-1

4、时, 发散; 当 x=1 时, 收敛,故幂级数 2.求幂级数 (分数:4.00)_正确答案:()解析:解 由 得收敛半径为 当 时, 发散,故级数的收敛区间为 3.求幂级数 (分数:4.00)_正确答案:()解析:解 令 x-1=t,显然级数 的收敛半径为 R=1,又当 t=1 时, 由 收敛,得级数 绝对收敛,所以级数 4.求幂级数 (分数:4.00)_正确答案:()解析:解 5.求幂级数 (分数:4.00)_正确答案:()解析:解 6.求幂级数 (分数:4.00)_正确答案:()解析:解 由 得收敛半径为 R=4,当 x=4 时,因为 所以幂级数的收敛域为(-4,4) 7.求幂级数 (分数

5、:4.00)_正确答案:()解析:解 幂级数 的收敛半径为 R=1,收敛区间为(-1,1) 8.求幂级数 (分数:4.00)_正确答案:()解析:解 幂级数 的收敛半径为 R=1,收敛区间为(-1,1) 9.求幂级数 (分数:4.00)_正确答案:()解析:解 幂级数 的收敛半径为 R=+,收敛区间为(-,+) 10.求幂级数 (分数:4.00)_正确答案:()解析:解 令 x+1=t, 得收敛半径为 R=1,当 t=1 时,因为 所以收敛区间为-1t1,从而-2x0 11.求幂级数 (分数:4.00)_正确答案:()解析:解 由 得该级数的收敛半径为 R=1,因为当 x=1 时, 发散,所以

6、级数的收敛区间为(-1,1) 12.求幂级数 (分数:4.00)_正确答案:()解析:解 则收敛半径为 R=2, 当 x=-2 时, 收敛; 当 x=2 时, 发散,故幂级数的收敛域为-2,2) 13.求级数 (分数:4.00)_正确答案:()解析:解 令 x 2 +x+1=t,则级数化为 由 所以级数 的收敛半径为 R=1,注意到 又 t=1 时,级数 收敛,所以级数 的收敛域为 由 x 2 +x+11 得-1x0,故级数 的收敛域为-1,0 令 x=-1,0 时,S(-1)=S(0)=1,x(-1,0)时 14.求幂级数 (分数:4.00)_正确答案:()解析:解 令 (1).验证 (分数

7、:4.00)_正确答案:()解析:解 即级数 (2).求级数 (分数:4.00)_正确答案:()解析:解 由(1-x)y“+y=1+x,得 解得 y=C(x-1)-(x-1)ln(1-x)+2,由 y(0)=0 得 C=2, 所以 y=2x-(x-1)ln(1-x)(-1x1), 15.将 f(x)=arctanx 展开成 x 的幂级数 (分数:4.00)_正确答案:()解析:解 16.将 (分数:4.00)_正确答案:()解析:解 17.将 f(x)=lnx 展开成 x-2 的幂级数 (分数:4.00)_正确答案:()解析:解 18.将 (分数:4.00)_正确答案:()解析:解 设有幂级数 (分数:12.00)(1).求该幂级数的收敛域;(分数:4.00)_正确答案:()解析:解 因为(2).证明此幂级数满足微分方程 y“-y=-1,(分数:4.00)_正确答案:()解析:解 (3).求此幂级数的和函数(分数:4.00)_正确答案:()解析:解 由 f“(x)-f(x)=-1 得 f(x)=C 1 e -x +C 2 e x +1, 再由 f(0)=2,f“(0)=0 得

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1