ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:189.50KB ,
资源ID:1395040      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1395040.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学三(多元函数微分学)-试卷1及答案解析.doc)为本站会员(Iclinic170)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学三(多元函数微分学)-试卷1及答案解析.doc

1、考研数学三(多元函数微分学)-试卷 1 及答案解析(总分:62.00,做题时间:90 分钟)一、选择题(总题数:4,分数:8.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 u=f(x+y,xz)有二阶连续的偏导数,则 (分数:2.00)A.f 2 “ +xf 11 “ +(x+z)f 12 “ +xzf 22 “B.xf 12 “ +xzf 22 “C.f 2 “ +x 12 “ +xzf 22 “D.xzf 22 “3.函数 z=f(x,y)在点(x 0 ,y 0 )可偏导是函数 z=f(x,y)在点(x 0 ,y 0 )连续的( )(分数:

2、2.00)A.充分条件B.必要条件C.充分必要条件D.非充分非必要条件4.设可微函数 f(x,y)在点(x 0 ,y 0 )处取得极小值,则下列结论正确的是( )(分数:2.00)A.f(x 0 ,y)在 y=y 0 处导数为零B.f(x 0 ,y)在 y=y 0 处导数大于零C.f(x 0 ,y)在 y=y 0 处导数小于零D.f(x 0 ,y)在 y=y 0 处导数不存在二、填空题(总题数:10,分数:20.00)5.设 z=f(x 2 +y 2 +z 2 ,xyz)且 f 一阶连续可偏导,则 (分数:2.00)填空项 1:_6.设 y=y(x,z)是由方程 e x+y+z =x 2 +y

3、 2 +z 2 确定的隐函数,则 (分数:2.00)填空项 1:_7.设 z=f(x,y)是由 e 2yz +x+y 2 +z= 确定的函数,则 (分数:2.00)填空项 1:_8.设 y=y(x)由 x 一 1 x+y e 一 t2 dt=0 确定,则 (分数:2.00)填空项 1:_9.设 z=z(x,y)由 z+e 2 =xy 2 确定,则 dz= 1(分数:2.00)填空项 1:_10.设 z=f(x+y,y+z,z+x),其中 f 连续可偏导,则 (分数:2.00)填空项 1:_11.设 z=xy+ ,其中 f 可导,则 (分数:2.00)填空项 1:_12.由方程 xyz+ (分数

4、:2.00)填空项 1:_13.设 f(x,y,z)=e x yz 2 ,其中 z=z(x,y)是由 x+y+z+xyz=0 确定的隐函数,则 f“ x (0,1,一 1)= 1。(分数:2.00)填空项 1:_14.设 f(x,y)可微,且 f“ 1 (一 1,3)=一 2,f“ 2 (一 1,3)=1,令 z=f(2x 一 y, (分数:2.00)填空项 1:_三、解答题(总题数:17,分数:34.00)15.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_16.设 z=z(x,y)由 z 一 yz+ye z 一 x 一 y =0 确定,求 (分数:2.00)_17.设

5、z=fx 一 y+g(x 一 y 一 z),其中 f,g 可微,求 (分数:2.00)_18.设 u=f(z),其中 z 是由 z=y+x(z)确定的 x,y 的函数,其中 f(z)与 (z)为可微函数证明:(分数:2.00)_19.设 xy=xf(z)+yg(z),且 zf“(z)+yg“(z)0,其中 z=z(x,y)是 xy 的函数证明: (分数:2.00)_20.设 z=f(x,y)由方程 z 一 y 一 z+xe z 一 y 一 z =0 确定,求 dz(分数:2.00)_21.设 u=f(x,y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程 e xy 一 y=0 与 e

6、 z 一 xz=0 确定,求 (分数:2.00)_22.设 y=y(x),z=z(x)是由方程 z=xf(z+y)和 F(x,y,z)=0 所确定的函数,其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数,求 (分数:2.00)_23.设 y=f(x,t),其中是由 G(x,y,t)=0 确定的 x,y 的函数,且 f(x,t),G(x,y,t)一阶连续可偏导,求 (分数:2.00)_24.设 且 F 可微,证明: (分数:2.00)_25.设变换 可把方程 (分数:2.00)_26.设 z=x+(x 一 y),y,其中 f 二阶连续可偏导, 二阶可导,求 (分数:2.00)_27.设 f

7、(x+y,x 一 y)=c 2 一 y 2 + ,求 f(u,),并求 (分数:2.00)_28.求二元函数 f(x,y)=x 2 (2+y 2 )+ylny 的极值(分数:2.00)_29.试求 z=f(x,y)=x 3 +y 3 3xy 在矩形闭域 D=(x,y)|0x2,一 1y2)上的最大值与最小值(分数:2.00)_30.平面曲线 L: (分数:2.00)_31.设某工厂生产甲乙两种产品,产量分别为 x 件和 y 件,利润函数为 L(x,y)=6x 一 x 2 +16y 一 4y 2 2(万元)已知生产这两种产品时,每件产品都要消耗原料 2000kg,现有该原料 12000kg,问两

8、种产品各生产多少时总利润最大?最大利润是多少?(分数:2.00)_考研数学三(多元函数微分学)-试卷 1 答案解析(总分:62.00,做题时间:90 分钟)一、选择题(总题数:4,分数:8.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 u=f(x+y,xz)有二阶连续的偏导数,则 (分数:2.00)A.f 2 “ +xf 11 “ +(x+z)f 12 “ +xzf 22 “B.xf 12 “ +xzf 22 “C.f 2 “ +x 12 “ +xzf 22 “ D.xzf 22 “解析:解析: 3.函数 z=f(x,y)在点(x 0 ,

9、y 0 )可偏导是函数 z=f(x,y)在点(x 0 ,y 0 )连续的( )(分数:2.00)A.充分条件B.必要条件C.充分必要条件D.非充分非必要条件 解析:解析:如 f(x,y)= 在点(0,0)处可偏导,但不连续;又如 f(x,y)=4.设可微函数 f(x,y)在点(x 0 ,y 0 )处取得极小值,则下列结论正确的是( )(分数:2.00)A.f(x 0 ,y)在 y=y 0 处导数为零 B.f(x 0 ,y)在 y=y 0 处导数大于零C.f(x 0 ,y)在 y=y 0 处导数小于零D.f(x 0 ,y)在 y=y 0 处导数不存在解析:解析:可微函数 f(x,y)在点(x 0

10、 ,y 0 )处取得极小值,则有 f“ x (x 0 ,y 0 )=0,f“ y (x 0 ,y 0 )=0, 于是 f(x 0 ,y)在 y=y 0 处导数为零,选(A)二、填空题(总题数:10,分数:20.00)5.设 z=f(x 2 +y 2 +z 2 ,xyz)且 f 一阶连续可偏导,则 (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:6.设 y=y(x,z)是由方程 e x+y+z =x 2 +y 2 +z 2 确定的隐函数,则 (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:7.设 z=f(x,y)是由 e 2yz +x+y 2 +z

11、= 确定的函数,则 (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:8.设 y=y(x)由 x 一 1 x+y e 一 t2 dt=0 确定,则 (分数:2.00)填空项 1:_ (正确答案:正确答案:e 一 1)解析:解析:当 x=0 时,y=1,x 一 1 x+y e 一 t2 dt=0 两遍求导得 9.设 z=z(x,y)由 z+e 2 =xy 2 确定,则 dz= 1(分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:z+e z =xy 2 两边求微分得 d(z+e z )=d(xy) 2 ,即 dz+e z dz=y 2 dx+2xydy

12、解得 10.设 z=f(x+y,y+z,z+x),其中 f 连续可偏导,则 (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:z=f(x+y,y+z,z+x)两边求偏导得11.设 z=xy+ ,其中 f 可导,则 (分数:2.00)填空项 1:_ (正确答案:正确答案:z+xy)解析:解析:12.由方程 xyz+ (分数:2.00)填空项 1:_ (正确答案:正确答案:dx 一*)解析:解析: 把(1,0,一 1),代入上式得 dz=dx 一13.设 f(x,y,z)=e x yz 2 ,其中 z=z(x,y)是由 x+y+z+xyz=0 确定的隐函数,则 f“ x (0

13、,1,一 1)= 1。(分数:2.00)填空项 1:_ (正确答案:正确答案:1)解析:解析:f x (x,y,z)= ,x+y+z+xyz=0 两边对 x 求偏导得 ,将 x=0,y=1,z=一 1代入得 14.设 f(x,y)可微,且 f“ 1 (一 1,3)=一 2,f“ 2 (一 1,3)=1,令 z=f(2x 一 y, (分数:2.00)填空项 1:_ (正确答案:正确答案:一 7dx+3dy)解析:解析: 三、解答题(总题数:17,分数:34.00)15.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_解析:16.设 z=z(x,y)由 z 一 yz+ye z 一

14、 x 一 y =0 确定,求 (分数:2.00)_正确答案:(正确答案:方程 x 一 yz+ye z 一 x 一 y =0 两边对 x 求偏导得 方程 x 一 yz+ye z 一 x 一 y =0两边对 y 求偏导得 )解析:17.设 z=fx 一 y+g(x 一 y 一 z),其中 f,g 可微,求 (分数:2.00)_正确答案:(正确答案:等式 z=f(x 一 y+g(x 一 y 一 z)两边对 x 求偏导得 等式 z=f(x 一 y+g(x 一 y一 z)两边对 y 求偏导得 )解析:18.设 u=f(z),其中 z 是由 z=y+x(z)确定的 x,y 的函数,其中 f(z)与 (z)

15、为可微函数证明:(分数:2.00)_正确答案:(正确答案: )解析:19.设 xy=xf(z)+yg(z),且 zf“(z)+yg“(z)0,其中 z=z(x,y)是 xy 的函数证明: (分数:2.00)_正确答案:(正确答案:xy=xf(z)+yg(z)两边分别对 x,y 求偏导,得 )解析:20.设 z=f(x,y)由方程 z 一 y 一 z+xe z 一 y 一 z =0 确定,求 dz(分数:2.00)_正确答案:(正确答案:对 z 一 y 一 x+xe z 一 y 一 x =0 两边求微分,得 dz 一 dy 一 dx+e z 一 y 一 x dx+xe z 一y 一 x (dz

16、一 dy 一 dx)=0, 解得 )解析:21.设 u=f(x,y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程 e xy 一 y=0 与 e z 一 xz=0 确定,求 (分数:2.00)_正确答案:(正确答案: 方程 e xy 一 y=0 两边对 x 求导得 方程 e z 一 xz=0 两边对 x 求导得 )解析:22.设 y=y(x),z=z(x)是由方程 z=xf(z+y)和 F(x,y,z)=0 所确定的函数,其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数,求 (分数:2.00)_正确答案:(正确答案:z=xf(x+y)及 F(x,y,z)=0 两边对 x 求导数

17、,得 )解析:23.设 y=f(x,t),其中是由 G(x,y,t)=0 确定的 x,y 的函数,且 f(x,t),G(x,y,t)一阶连续可偏导,求 (分数:2.00)_正确答案:(正确答案:将 y=f(x,t)与 G(x,y,t)=0 两边对 x 求导得 解得 )解析:24.设 且 F 可微,证明: (分数:2.00)_正确答案:(正确答案: 两边对 x 求偏导得 两边对 y 求偏导得 )解析:25.设变换 可把方程 (分数:2.00)_正确答案:(正确答案:将 u, 作为中间变量,则函数关系为 z=f(u,), 则有 将上述式子代入方程 根据题意得 )解析:26.设 z=x+(x 一 y

18、),y,其中 f 二阶连续可偏导, 二阶可导,求 (分数:2.00)_正确答案:(正确答案:z=fx+(x 一 y),y两边对 y 求偏导得 =一 f“ 1 “+f“ 2 , )解析:27.设 f(x+y,x 一 y)=c 2 一 y 2 + ,求 f(u,),并求 (分数:2.00)_正确答案:(正确答案:令 ,从而 f(u,)=u+ 于是 )解析:28.求二元函数 f(x,y)=x 2 (2+y 2 )+ylny 的极值(分数:2.00)_正确答案:(正确答案:二元函数 f(x,y)的定义域为 D=(x,y|y0, 因为 AC 一 B 2 0 且A0,所以 为 f(x,y)的极小点,极小值

19、为 )解析:29.试求 z=f(x,y)=x 3 +y 3 3xy 在矩形闭域 D=(x,y)|0x2,一 1y2)上的最大值与最小值(分数:2.00)_正确答案:(正确答案:当(x,y)在区域 D 内时, 在 L 1 :y=一 1(0x2)上,z=z 3 +3x 一 1, 因为 z“=3x 2 +30,所以最小值为 z(0)=一 1,最大值为 z(2)=13; 在 L 2 :y=2(0x2)上,z=x 3 6x+8, 由 z“=3x 2 一 6=0 得 x= ,z(0)=8,2( )=8 ,z(2)=4; 在 L 3 :x=0(一1y2)上,z=y 3 , 由 z“=3y 2 =0 得 y=

20、0,z(一 1)=一 1,z(0)=0,z(2)=8; 在 L 4 :x=2(一1y2)上,z=y 3 6y+8, 由 z“=3y2 一 6=0 得 y= ,z(一 1)=13,z( )=8 一 4 )解析:30.平面曲线 L: (分数:2.00)_正确答案:(正确答案:曲线 绕 x 轴旋转一周所得的曲面为 根据对称性,设内接长方体在第一卦限的顶点坐标为 M(x,y,z),则体积为 V=8xyz 令 由 由实际问题的特性及点的唯一性,当 时,内接长方体体积最大,最大体积为 )解析:31.设某工厂生产甲乙两种产品,产量分别为 x 件和 y 件,利润函数为 L(x,y)=6x 一 x 2 +16y 一 4y 2 2(万元)已知生产这两种产品时,每件产品都要消耗原料 2000kg,现有该原料 12000kg,问两种产品各生产多少时总利润最大?最大利润是多少?(分数:2.00)_正确答案:(正确答案:根据题意,即求函数 L(x,y)=6x 一 x 2 +16y4y 2 2 在 0x+y6 下的最大值 L(x,y)的唯一驻点为(3,2), 令 F(x,y,)=6x 一 x 2 +16y4y 2 一 2+(x+y 一 6), 由 )解析:

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1