ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:143.50KB ,
资源ID:1395847      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1395847.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学二-442及答案解析.doc)为本站会员(brainfellow396)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学二-442及答案解析.doc

1、考研数学二-442 及答案解析(总分:100.00,做题时间:90 分钟)一、选择题(总题数:2,分数:10.00)1.微分方程 y“-y=e x +1 的一个特解应具有形式(式中 a,b 为常数)_. A.aex+b B.axex+b C.aex+bx D.axex+bx(分数:5.00)A.B.C.D.2.在下列微分方程中以 y=C 1 e x +C 2 cos2x+C 3 sin2x(C 1 ,C 2 ,C 3 为任意常数)为通解的是_.(分数:5.00)A.y“+y“-4y“-4y=0B.y“+y“+4y“+4y=0C.y“-y“-4y“+4y=0D.y“-y“+4y“-4y=0二、解

2、答题(总题数:18,分数:90.00)3.设函数 y=y(x)满足 (分数:5.00)_4.设 f(x)在(-,+)上有定义,且对任意实数 a,b,都有等式 f(a+b)=e a f(b)+e b f(a)成立,又f“(0)=1,求 f(x) (分数:5.00)_5.设当 u0 时 f(u)一阶连续可导,且 f(1)=0,又二元函数 z=f(e x -e y )满足 (分数:5.00)_6.求微分方程 (分数:5.00)_7.微分方程 (分数:5.00)_8.求微分方程 (分数:5.00)_9.求微分方程 xy“+(1-x)y=e 2x (x0)的满足 (分数:5.00)_10.求微分方程 y

3、“+ycosx=(lnx)e -sinx 的通解 (分数:5.00)_11.求微分方程 (分数:5.00)_12.求微分方程(1-x 2 )y“-xy“=0 的满足初始条件 y(0)=0,y“(0)=1 的特解 (分数:5.00)_13.已知微分方程 y“+y=f(x),其中 (分数:5.00)_14.解方程(3x 2 +2)y“=6xy“,已知其解与 e x -1(x0)为等价无穷小 (分数:5.00)_15.求微分方程 yy“+(y“) 2 =0 的满足初始条件 (分数:5.00)_16.设函数 y=y(x)满足微分方程 y“-3y“+2y=2e x ,且其图形在点(0,1)处的切线与曲线

4、 y=x 2 -x+1 在该点的切线重合,求函数 y=y(x) (分数:5.00)_17.求微分方程 y“-y=4cosx+e x 的通解 (分数:5.00)_18.设连续函数 f(x)满足: (分数:5.00)_19.设 f(x)二阶可导,且 (分数:5.00)_20.设 满足 (分数:5.00)_考研数学二-442 答案解析(总分:100.00,做题时间:90 分钟)一、选择题(总题数:2,分数:10.00)1.微分方程 y“-y=e x +1 的一个特解应具有形式(式中 a,b 为常数)_. A.aex+b B.axex+b C.aex+bx D.axex+bx(分数:5.00)A.B.

5、 C.D.解析:解 y“-y=0 的特征方程为 2 -1=0,特征值为 1 =-1, 2 =1, y“-y=e x 的特解形式为 y 1 =axe x ,y“-y=1 的特解形式为 y 2 =b, 故方程 y“-y=e x +1 的特解形式为 y=axe x +b,应选 B2.在下列微分方程中以 y=C 1 e x +C 2 cos2x+C 3 sin2x(C 1 ,C 2 ,C 3 为任意常数)为通解的是_.(分数:5.00)A.y“+y“-4y“-4y=0B.y“+y“+4y“+4y=0C.y“-y“-4y“+4y=0D.y“-y“+4y“-4y=0 解析:解 因为通解为 y=C 1 e

6、x +C 2 cos2x+C 3 sin2x, 所以特征值为 1 =1, 2,3 =2i, 特征方程为(-1)(-2i)(+2i)=0,整理得 3 - 2 +4-4=0, 对应为微分方程为 y“-y“+4y“-4y=0,应选 D二、解答题(总题数:18,分数:90.00)3.设函数 y=y(x)满足 (分数:5.00)_正确答案:()解析:解 由 得 y=y(x)可导且 即 解得 由 y(0)=0 得 故 4.设 f(x)在(-,+)上有定义,且对任意实数 a,b,都有等式 f(a+b)=e a f(b)+e b f(a)成立,又f“(0)=1,求 f(x) (分数:5.00)_正确答案:()

7、解析:解 取 a=0,b=0 得 f(0)=0. 通解为 5.设当 u0 时 f(u)一阶连续可导,且 f(1)=0,又二元函数 z=f(e x -e y )满足 (分数:5.00)_正确答案:()解析:解 由 6.求微分方程 (分数:5.00)_正确答案:()解析:解 由 令 原方程化为 整理得 积分得 7.微分方程 (分数:5.00)_正确答案:()解析:解 令 原方程化为 变量分离得 8.求微分方程 (分数:5.00)_正确答案:()解析:解 通解为9.求微分方程 xy“+(1-x)y=e 2x (x0)的满足 (分数:5.00)_正确答案:()解析:解 原方程化为 由 得 C=-1,故

8、特解为 10.求微分方程 y“+ycosx=(lnx)e -sinx 的通解 (分数:5.00)_正确答案:()解析:解 通解为11.求微分方程 (分数:5.00)_正确答案:()解析:解 原方程化为 12.求微分方程(1-x 2 )y“-xy“=0 的满足初始条件 y(0)=0,y“(0)=1 的特解 (分数:5.00)_正确答案:()解析:解 由(1-x 2 )y“-xy“=0 的 由 y“(0)=1 得 C 1 =1,从而 13.已知微分方程 y“+y=f(x),其中 (分数:5.00)_正确答案:()解析:解 当 0x1 时,y“+y=2 的通解为 y=C 1 e -x +2; 当 x

9、1 时,y“+y=0 的通解为 y=C 2 e -x , 即 由 y(0)=0 得 C 1 =-2,再由 C 1 e -1 +2=C 2 e -1 得 C 2 =2e-2, 故所求的特解为 14.解方程(3x 2 +2)y“=6xy“,已知其解与 e x -1(x0)为等价无穷小 (分数:5.00)_正确答案:()解析:解 由 从而 y“=C 1 (3x 2 +2),解得 y=C 1 x 3 +2C 1 x+C 2 , 因为 C 1 x 3 +2C 1 x+C 2 e x -1x,所以 故所求的解为 15.求微分方程 yy“+(y“) 2 =0 的满足初始条件 (分数:5.00)_正确答案:(

10、)解析:解 由 yy“+(y“) 2 =0 得(yy“)“=0,从而 yy“=C 1 , 进一步得 于是 由 得 故 16.设函数 y=y(x)满足微分方程 y“-3y“+2y=2e x ,且其图形在点(0,1)处的切线与曲线 y=x 2 -x+1 在该点的切线重合,求函数 y=y(x) (分数:5.00)_正确答案:()解析:解 特征方程为 2 -3+2=0,特征值为 1 =1, 2 =2, y“-3y“+2y=0 的通解为 y=C 1 e x +C 2 e 2x 令特解 y 0 =axe x ,代入得 a=-2, 原方程的通解为 y=C 1 e x +C 2 e 2x -2xe x 曲线

11、y=x 2 -x+1 在(0,1)处的斜率为 y“| x=0 =-1, 由题意得 y(0)=1,y“(0)=-1,从而 17.求微分方程 y“-y=4cosx+e x 的通解 (分数:5.00)_正确答案:()解析:解 特征方程为 2 -1=0,特征值为 1 =-1, 2 =1, y“-y=0 的通解为 y=C 1 e -x +C 2 e x , 令 y“-y=4cosx 的特解为 y 1 =acosx+bsinx,代入得 a=-2,b=0; 令 y“-y=e x 的特解为 y 3 =cxe x ,代入得 特解为 18.设连续函数 f(x)满足: (分数:5.00)_正确答案:()解析:解 因为 19.设 f(x)二阶可导,且 (分数:5.00)_正确答案:()解析:解 两边求导得 20.设 满足 (分数:5.00)_正确答案:()解析:解 令 由对称性得 f“(lnr)=r 5 ,从而 f“(t)=e 5t ,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1