ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:174.50KB ,
资源ID:1396008      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1396008.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学二(一元函数微分学)-试卷1及答案解析.doc)为本站会员(ownview251)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学二(一元函数微分学)-试卷1及答案解析.doc

1、考研数学二(一元函数微分学)-试卷 1 及答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设 f(x)在 x=a 处可导,且 f(a)0,则f(x)在 x=a 处( )(分数:2.00)A.可导B.不可导C.不一定可导D.不连续3.设 为 f(x)=arctanx 在0,a上使用微分中值定理的中值,则 为( ) (分数:2.00)A.B.C.D.4.设 f(x)在 x=a 处二阶可导,则 (分数:2.00)A.-f“(a)B.f“(a)C.2f“(a)D.5.设 f

2、(x)在 x=0 处二阶可导,f(0)=0 且 (分数:2.00)A.f(0)是 f(x)的极大值B.f(0)是 f(x)的极小值C.(0,f(0)是曲线 y=f(x)的拐点D.f(0)不是 f(x)的极值,(0,f(0)也不是曲线 y=f(x)的拐点6.设 f(x)连续可导,g(x)连续,且 (分数:2.00)A.x=0 为 f(x)的极大点B.x=0 为 f(x)的极小点C.(0,f(0)为 y=f(x)的拐点D.x=0 既不是 f(x)极值点,(0,f(0)也不是 y=f(x)的拐点7.设 f(x)在 x=a 处的左右导数都存在,则 f(x)在 x=a 处( )(分数:2.00)A.一定

3、可导B.一定不可导C.不一定连续D.连续8.曲线 y= (分数:2.00)A.0 条B.1 条C.2 条D.3 条9.设函数 f(x)在(-,+)内连续,其导数的图形如右图,则 f(x)有( ) (分数:2.00)A.两个极大点,两个极小点,一个拐点B.两个极大点,两个极小点,两个拐点C.三个极大点,两个极小点,两个拐点D.两个极大点,三个极小点,两个拐点二、填空题(总题数:5,分数:10.00)10.设 f(x)= (分数:2.00)填空项 1:_11.设两曲线 y=x 2 +ax+b 与-2y=-1+xy 3 在点(-1,1)处相切,则 a= 1,b= 2(分数:2.00)填空项 1:_填

4、空项 1:_12.设函数 y= (分数:2.00)填空项 1:_13.设 f(x)二阶连续可导,且 (分数:2.00)填空项 1:_14.设 f(x)在 x=1 处一阶连续可导,且 f“(1)=-2,则 (分数:2.00)填空项 1:_三、解答题(总题数:15,分数:30.00)15.解答题解答应写出文字说明、证明过程或演算步骤。_16.设 x=x(t)由 sint- (分数:2.00)_17.设 x 3 -3xy+y 3 =3 确定 y 为 x 的函数,求函数 y=y(x)的极值点(分数:2.00)_18.x=(y)是 y=f(x)的反函数,f(x)可导,且 f“(x)= (分数:2.00)

5、_19.设 f(x)连续,(x)= (分数:2.00)_20.设函数 f(x)在 x=1 的某邻域内有定义,且满足f(x)-2e x (x-1) 2 ,研究函数 f(x)在 x=1 处的可导性(分数:2.00)_21.设 f(x)在 x=0 的邻域内二阶连续可导, (分数:2.00)_22.设 y= (分数:2.00)_23.设 f(x)= (分数:2.00)_设 f(x)在0,1上连续,在(0,1)内可导,f(0)=0, (分数:4.00)(1).存在 (分数:2.00)_(2).对任意的 k(-,+),存在 (0,),使得 f“()-kf()-=1(分数:2.00)_24.设 f(x)在0

6、,2上连续,在(0,2)内二阶可导,且 =0,又 f(2)= (分数:2.00)_25.设 f(x)在0,1上可导,f(0)=0,f“(x) (分数:2.00)_26.设 f(x)Ca,b,在(a,b)内可导,f(a)=f(b)=1证明:存在 ,(a,b),使得 2e 2- =(e a +e b )f“()+f()(分数:2.00)_27.设 f(x)二阶可导,f(0)=f(1)=0 且 (分数:2.00)_28.一质点从时间 t=0 开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零证明:在运动过程中存在某个时刻点,其加速度绝对值不小于 4(分数:2.00)_考研数学二(一元

7、函数微分学)-试卷 1 答案解析(总分:58.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设 f(x)在 x=a 处可导,且 f(a)0,则f(x)在 x=a 处( )(分数:2.00)A.可导 B.不可导C.不一定可导D.不连续解析:解析:不妨设 f(a)0,因为 f(x)在 x=a 处可导,所以 f(x)在 x=a 处连续,于是存在 0,当x-a 时,有 f(x)0,于是3.设 为 f(x)=arctanx 在0,a上使用微分中值定理的中值,则 为( ) (分数:2.00)

8、A.B.C. D.解析:解析:令 f(a)-f(0)=f“()a,即 arctana=4.设 f(x)在 x=a 处二阶可导,则 (分数:2.00)A.-f“(a)B.f“(a)C.2f“(a)D. 解析:解析:5.设 f(x)在 x=0 处二阶可导,f(0)=0 且 (分数:2.00)A.f(0)是 f(x)的极大值B.f(0)是 f(x)的极小值 C.(0,f(0)是曲线 y=f(x)的拐点D.f(0)不是 f(x)的极值,(0,f(0)也不是曲线 y=f(x)的拐点解析:解析:由 ,得 f(0)+f“(0)=0,于是 f“(0)=0 再由6.设 f(x)连续可导,g(x)连续,且 (分数

9、:2.00)A.x=0 为 f(x)的极大点B.x=0 为 f(x)的极小点C.(0,f(0)为 y=f(x)的拐点 D.x=0 既不是 f(x)极值点,(0,f(0)也不是 y=f(x)的拐点解析:解析:由 所以存在 0,当 0x 时,7.设 f(x)在 x=a 处的左右导数都存在,则 f(x)在 x=a 处( )(分数:2.00)A.一定可导B.一定不可导C.不一定连续D.连续 解析:解析:因为 f(x)在 x=a 处右可导,所以8.曲线 y= (分数:2.00)A.0 条B.1 条C.2 条D.3 条 解析:解析:因为 无水平渐近线; 由 有两条铅直渐近线; 由9.设函数 f(x)在(-

10、,+)内连续,其导数的图形如右图,则 f(x)有( ) (分数:2.00)A.两个极大点,两个极小点,一个拐点B.两个极大点,两个极小点,两个拐点C.三个极大点,两个极小点,两个拐点 D.两个极大点,三个极小点,两个拐点解析:解析:设当 x0 时,f“(x)与 x 轴的两个交点为(x 1 ,0),(x 2 ,0),其中 x 1 x 2 ;当 x0时,f“(x)与 x 轴的两个交点为(x 3 ,0),( 4 ,0),其中 x 3 x 4 当 xx 1 时,f“(x)0,当 x(x 1 ,x 2 )时,f“(x)0,则 x=x 1 为 f(x)的极大点;当 x(x 2 ,0)时,f“(x)0,则

11、x=x 2 为 f(x)的极小点;当 x(0,x 3 )时,f“(x)0,则 x=0 为 f(x)的极大点;当 x(x 3 ,x 4 )时,f“(x)0,则x=x 3 为 f(x)的极小点;当 xx 4 时,f(x)0,则 x=x 4 为 f(x)的极大点,即 f(x)有三个极大点,两个极小点,又 f“(x)有两个零点,根据一阶导数在两个零点两侧的增减性可得,y=f(x)有两个拐点,选(C)二、填空题(总题数:5,分数:10.00)10.设 f(x)= (分数:2.00)填空项 1:_ (正确答案:正确答案:2x(1+4x)e 8x )解析:解析:由 f(x) 11.设两曲线 y=x 2 +a

12、x+b 与-2y=-1+xy 3 在点(-1,1)处相切,则 a= 1,b= 2(分数:2.00)填空项 1:_ (正确答案:正确答案:3)填空项 1:_ (正确答案:3)解析:解析:因为两曲线过点(-1,1),所以 b-a=0,又由 y=x 2 +ax+b 得 12.设函数 y= (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:解析:由13.设 f(x)二阶连续可导,且 (分数:2.00)填空项 1:_ (正确答案:正确答案:e 2 )解析:解析:由 =0 得 f(0)=0,f“(0)=0,则14.设 f(x)在 x=1 处一阶连续可导,且 f“(1)=-2,则 (分数:2

13、.00)填空项 1:_ (正确答案:正确答案:1)解析:解析:由三、解答题(总题数:15,分数:30.00)15.解答题解答应写出文字说明、证明过程或演算步骤。_解析:16.设 x=x(t)由 sint- (分数:2.00)_正确答案:(正确答案:将 t=0 代入 )解析:17.设 x 3 -3xy+y 3 =3 确定 y 为 x 的函数,求函数 y=y(x)的极值点(分数:2.00)_正确答案:(正确答案:x 3 -3xy+y 3 =3 两边对 x 求导得 )解析:18.x=(y)是 y=f(x)的反函数,f(x)可导,且 f“(x)= (分数:2.00)_正确答案:(正确答案:因为 )解析

14、:19.设 f(x)连续,(x)= (分数:2.00)_正确答案:(正确答案:当 x0 时,(x)= )解析:20.设函数 f(x)在 x=1 的某邻域内有定义,且满足f(x)-2e x (x-1) 2 ,研究函数 f(x)在 x=1 处的可导性(分数:2.00)_正确答案:(正确答案:把 x=1 代入不等式中,得 f(1)=2e 当 x1 时,不等式两边同除以x-1,得)解析:21.设 f(x)在 x=0 的邻域内二阶连续可导, (分数:2.00)_正确答案:(正确答案:由 则 y=f(x)在点(0,f(0)处的曲率为 )解析:22.设 y= (分数:2.00)_正确答案:(正确答案:当x1

15、 时, 当 x1 时,y“=1;当 x-11 时,y“=-1; 由 得 y在 x=-1 处不连续,故 y“(-1)不存在; 因为 y“ - (1)y“ + (1),所以 y 在 x=1 处不可导, 故 y“= )解析:23.设 f(x)= (分数:2.00)_正确答案:(正确答案:因为 f(x)在 x=0 处连续,所以 c=0,即 f(x)= 由 f(x)在 x=0 处可导,得b=1,即 f(x)= 于是 )解析:设 f(x)在0,1上连续,在(0,1)内可导,f(0)=0, (分数:4.00)(1).存在 (分数:2.00)_正确答案:(正确答案:令 (x)=f(x)-x,(x)在0,1上连

16、续, ,(1)=-10,由零点定理,存在 )解析:(2).对任意的 k(-,+),存在 (0,),使得 f“()-kf()-=1(分数:2.00)_正确答案:(正确答案:设 F(x)=e -kx (x),显然 F(x)在0,上连续,在(0,)内可导,且 F(0)=F()=0,由罗尔定理,存在 (0,),使得 F“()=0,整理得 f“()=kf()-=1)解析:24.设 f(x)在0,2上连续,在(0,2)内二阶可导,且 =0,又 f(2)= (分数:2.00)_正确答案:(正确答案:由 =0,得 f(1)=-1, 由积分中值定理得 f(2)= 由罗尔定理,存在 x 0 (c,2) (1,2)

17、,使得 f“(x 0 )=0 令 (x)=e x f“(x),则 (1)=(x 0 )=0, 由罗尔定理,存在 (1,x 0 ) )解析:25.设 f(x)在0,1上可导,f(0)=0,f“(x) (分数:2.00)_正确答案:(正确答案:因为 f(x)在0,1上可导,所以 f(x)在0,1上连续,从而f(x)在0,1上连续,故f(x)在0,1上取到最大值 M,即存在 x 0 0,1,使得f(x 0 )=M 当 x 0 =0 时,则 M=0,所以 f(x)0,x0,1; 当 x 0 0 时,M=f(x 0 )=f(x 0 )-f(0)=f“()x 0 f“() )解析:26.设 f(x)Ca,

18、b,在(a,b)内可导,f(a)=f(b)=1证明:存在 ,(a,b),使得 2e 2- =(e a +e b )f“()+f()(分数:2.00)_正确答案:(正确答案:令 (x)=e x f(x),由微分中值定理,存在 (a,b),使得 =e f“()+f(), 再由 f(a)=f(b)=1,得 =e f“()+f(), 从而 =(e a +e b )e f“()+f(), 令 (x)=e 2x ,由微分中值定理,存在 (a,b),使得 )解析:27.设 f(x)二阶可导,f(0)=f(1)=0 且 (分数:2.00)_正确答案:(正确答案:因为 f(x)在0,1上二阶可导,所以 f(x)

19、在0,1上连续且 f(0)=f(1)=0, =-1,由闭区间上连续函数最值定理知,f(x)在0,1取到最小值且最小值在(0,1)内达到,即存在 c(0,1),使得 f(c)=-1,再由费马定理知 f“(c)=0, 根据泰勒公式 f(0)=f(c)+f“(c)(0-c)+ (0-c) 2 , 1 (0,c) f(1)=f(c)+f“(c)(1-c)+ (1-c) 2 , 2 (c,1) 整理得 当 c 8,取 = 1 ; 当 c )解析:28.一质点从时间 t=0 开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零证明:在运动过程中存在某个时刻点,其加速度绝对值不小于 4(分数:2.00)_正确答案:(正确答案:设运动规律为 S=S(t),显然 S(0)=0,S“(0)=0,S(1)=1,S“(1)=0由泰勒公式 两式相减,得 S“( 2 )-S( 1 )=-8 )解析:

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1