ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:214.50KB ,
资源ID:1396132      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-1396132.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【考研类试卷】考研数学二(二重积分)-试卷5及答案解析.doc)为本站会员(brainfellow396)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

【考研类试卷】考研数学二(二重积分)-试卷5及答案解析.doc

1、考研数学二(二重积分)-试卷 5 及答案解析(总分:52.00,做题时间:90 分钟)一、填空题(总题数:5,分数:10.00)1.I (分数:2.00)填空项 1:_2.设 D:01,0y1,则 I (分数:2.00)填空项 1:_3.设 I 1 ( 4 y 4 )d,I 2 ( 4 y 4 )d,I 3 (分数:2.00)填空项 1:_4.设 D 为圆域 2 y 2 ,则 I (分数:2.00)填空项 1:_5.设 D 是 Oy 平面上以 A(1,1),B(1,1)和 C(1,1)为顶点的三角形区域,则 I (分数:2.00)填空项 1:_二、解答题(总题数:21,分数:42.00)6.解

2、答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_7.在极坐标变换下将 (分数:2.00)_8.计算二重积分 I (分数:2.00)_9.求 I ,其中 D 为 y (分数:2.00)_10.求 I (分数:2.00)_11.求 I (分数:2.00)_12.求 I (分数:2.00)_13.设 D 由抛物线 y 2 ,y4 2 及直线 y1 所围成用先 后 y 的顺序,将 I (分数:2.00)_14.求 I (分数:2.00)_15.交换累次积分的积分顺序:I (分数:2.00)_16.将极坐标变换后的二重积分 f(rcos,rsin)rdrd 的如下累次积分交换积分顺序:I

3、 (分数:2.00)_17.计算累次积分:I 0 1 d 1 +1 ydy 1 2 d +1 ydy 2 3 d 3 ydy(分数:2.00)_18.将 (分数:2.00)_19.计算 (分数:2.00)_20.计算 (分数:2.00)_21.计算二重积分: (分数:2.00)_22.计算下列二重积分: () yd,其中 D 是由曲线 rsin2(0 )围成的区域; () yd,其中 D 是由曲线 y (分数:2.00)_23.求下列二重积分: ()I ,其中 D 为正方形域:01,0y1; ()I 34yddy,其中 D: 2 y 2 1; ()I yddy,其中 D 由直线2,y0,y2

4、及曲线 (分数:2.00)_24.设函数 f()在区间a,b上连续,且恒大于零,证明:f()d (分数:2.00)_25.()记 (R)(,y) 2 y 2 R 2 ,I(R) ()证明: (分数:2.00)_26.设 f()在区间0,1上连续,证明: 0 1 f()d 1 f(y)dy (分数:2.00)_考研数学二(二重积分)-试卷 5 答案解析(总分:52.00,做题时间:90 分钟)一、填空题(总题数:5,分数:10.00)1.I (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:2.设 D:01,0y1,则 I (分数:2.00)填空项 1:_ (正确答案:正确答案:

5、*)解析:3.设 I 1 ( 4 y 4 )d,I 2 ( 4 y 4 )d,I 3 (分数:2.00)填空项 1:_ (正确答案:正确答案:I 3 I 1 I 2 )解析:4.设 D 为圆域 2 y 2 ,则 I (分数:2.00)填空项 1:_ (正确答案:正确答案:*)解析:5.设 D 是 Oy 平面上以 A(1,1),B(1,1)和 C(1,1)为顶点的三角形区域,则 I (分数:2.00)填空项 1:_ (正确答案:正确答案:8)解析:二、解答题(总题数:21,分数:42.00)6.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_解析:7.在极坐标变换下将 (分数:

6、2.00)_正确答案:(正确答案:由于两个圆在极坐标下的表达式分别为:r2acos 与 r2asin,交点 P 处的极坐标是 ,于是连接 OP 将区域 D 分成两部分(见图 813), 则 或者先对 积分,则)解析:8.计算二重积分 I (分数:2.00)_正确答案:(正确答案:D 的图形如图 814 所示,虽然 D 的边界不是圆弧,但被积函数是 r ,选用极坐标变换方便在极坐标变换下,D 的边界方程是 从而 )解析:9.求 I ,其中 D 为 y (分数:2.00)_正确答案:(正确答案:区域 D 如图 815被积函数只含 y,先对 积分,虽然积分区域要分块,但计算较简单若先对 y 积分,则

7、求积分 要费点功夫 选择先对 积分,将 D 分块: )解析:10.求 I (分数:2.00)_正确答案:(正确答案: dy 的原函数不是初等函数,故 dy 积不出来,因此选先 后 y 的顺序积分区域 D 如图 816,于是 )解析:11.求 I (分数:2.00)_正确答案:(正确答案:D 的图形如图 817 这里被积函数 y( 2 y 2 )关于(,Y)为偶函数,而 D 1 (,y)01,0y * 3 与 D 1 (,y)10, 3 y0关于原点对称 因此 I )解析:12.求 I (分数:2.00)_正确答案:(正确答案:在积分区域 D 上被积函数分块表示为 y 2 , 因此要将 D 分块

8、,用分块积分法又 D 关于 y 轴对称,被积函数关于 为偶函数,记 D 1 (,y)(,y)D,0,y 2 ,D 2 (,y)(,y)D,0,y 2 , )解析:13.设 D 由抛物线 y 2 ,y4 2 及直线 y1 所围成用先 后 y 的顺序,将 I (分数:2.00)_正确答案:(正确答案:区域 D 如图 818 所示,将 D 分成 0 与 0 两部分才是先积 后积 y 的类型,于是用分块积分法即得 )解析:14.求 I (分数:2.00)_正确答案:(正确答案:D 是圆域:(1) 2 (y1) 2 1,见图 819作平移变换u1,vy1,则 其中 D(u,v)u 2 v 2 1 )解析

9、:15.交换累次积分的积分顺序:I (分数:2.00)_正确答案:(正确答案:先对 积分,就是从区域 D 的左侧边界 y * 到右侧边界 y2两边界线的交点为(1,一 1)与(4,2),得 I )解析:16.将极坐标变换后的二重积分 f(rcos,rsin)rdrd 的如下累次积分交换积分顺序:I (分数:2.00)_正确答案:(正确答案:r2acos 是圆周 2 y 2 2a,即(a) 2 y 2 a 2 ,因此 D 的图形如图 821 所示为了先 后 r 的积分顺序,将 D 分成两块,如图 821 虚线所示,DD 1 D 2 , )解析:17.计算累次积分:I 0 1 d 1 +1 ydy

10、 1 2 d +1 ydy 2 3 d 3 ydy(分数:2.00)_正确答案:(正确答案:由累次积分限知:01 时 1y;12 时y1;23 时 y3,于是积分区域 D 如图 823 所示,因此 D 可表示为D(,y)1y3,y1y,则 原式 )解析:18.将 (分数:2.00)_正确答案:(正确答案:D 的极坐标表示: ,0rsin,即 ,r 2 rsin,即 2 y 2 y,0,则 D 为左半圆域: 2 y 2 y,0,即 2 ,0先对 y 后对 积分, D: ,于是 原式 )解析:19.计算 (分数:2.00)_正确答案:(正确答案:积分区域 D 为扇形 所以原式 )解析:20.计算

11、(分数:2.00)_正确答案:(正确答案:由于圆的方程为:(a) 2 (ya) 2 a 2 ,区域 D 的边界所涉及的圆弧为ya ,所以 )解析:21.计算二重积分: (分数:2.00)_正确答案:(正确答案: 如图 824,用直线 y2,y 将 D 分成 D 1 ,D 2 与 D 3 于是 )解析:22.计算下列二重积分: () yd,其中 D 是由曲线 rsin2(0 )围成的区域; () yd,其中 D 是由曲线 y (分数:2.00)_正确答案:(正确答案:()积分域 D 见图 825D 的极坐标表示是:00 ,0rsin2,于是 ()选用极坐标系,所涉及两个圆的极坐标方程为 r1 与

12、 r2sin,交点的极坐标为(1,)(见图 826),于是积分域 D 的极坐标表示为 D(r,) ,1r2sin),则 )解析:23.求下列二重积分: ()I ,其中 D 为正方形域:01,0y1; ()I 34yddy,其中 D: 2 y 2 1; ()I yddy,其中 D 由直线2,y0,y2 及曲线 (分数:2.00)_正确答案:(正确答案:()尽管 D 的边界不是圆弧,但由被积函数的特点知选用极坐标比较方便D 的边界线 1 及 y1 的极坐标方程分别为 ()在积分区域 D 上被积函数分块表示,若用分块积分法较复杂因 D 是圆域,可用极坐标变换,转化为考虑定积分的被积函数是分段表示的情

13、形这时可利用周期函数的积分性质 作极坐标变换 rcos,yrsin,则 D:02,0r1从而 其中 sin 0 ,cos 0 由周期函数的积分性质,令 t 0 就有 ()D 的图形如图 827 所示若把 D 看成正方形区域挖去半圆 D 1 ,则计算 D 1 上的积分自然选用极坐标变换若只考虑区域 D,则自然考虑先 后 y 的积分顺序化为累次积分若注意 D 关于直线y1 对称,选择平移变换则最为方便 作平移变换 u,vy1,注意曲线 , 即 2 (y1) 2 1,0,则 D 变成 D D由 u2,v1,v1,u 2 v 2 1(u0)围成,则 )解析:24.设函数 f()在区间a,b上连续,且恒

14、大于零,证明:f()d (分数:2.00)_正确答案:(正确答案:利用积分变量的改变,可得 其中 D(,y)ab,ayb并且利用对称性(D 关于 y 对称),可得 )解析:25.()记 (R)(,y) 2 y 2 R 2 ,I(R) ()证明: (分数:2.00)_正确答案:(正确答案:()首先用极坐标变换求出 I(R),然后求极限 I(R) 作极坐标变换rcos,yrsin 得 ()因为 在(,)可积,则 通过求 -R R d 再求极限的方法行不通,因为 d 积不出来(不是初等函数)但可以估计这个积分值为了利用 ddy,我们仍把一元函数的积分问题转化为二元函数的重积分问题 其中D(R)(,y)R,yR显然 I(R) , 又 ),于是 )解析:26.设 f()在区间0,1上连续,证明: 0 1 f()d 1 f(y)dy (分数:2.00)_正确答案:(正确答案:先将累次积分表成二重积分,则有 I 0 1 f()d 1 f(y)dy f()f(y)ddy, 其中 D,y)01,y1,如图 828,它与D(,y)01,0y关于 y 对称于是 )解析:

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1