ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:54.59KB ,
资源ID:295225      下载积分:1000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-295225.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012年浙教版初中数学八年级下 5.3平行四边形的性质练习卷与答案(带解析).doc)为本站会员(livefirmly316)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2012年浙教版初中数学八年级下 5.3平行四边形的性质练习卷与答案(带解析).doc

1、2012年浙教版初中数学八年级下 5.3平行四边形的性质练习卷与答案(带解析) 选择题 在 ABCD中, A的平分线交 BC于点 E,若 CD=10, AD=16,则 EC为( ) A 10 B 16 C 6 D 13 答案: C 试题分析:先画出图形,根据平行四边形的性质可得 AB=CD=10, AD=BC=16,AD BC,再结合 A的平分线可得 AB=BE,即可求得结果。 四边形 ABCD为平行四边形, AB=CD=10, AD=BC=16, AD BC, DAE= BEA, AE平分 DAB, DAE= BAE, BAE= BEA, AB=BE=10, EC=BC-BE=6, 故选 C

2、 考点:本题考查的是平行四边形的性质,角平分线的性质 点评:解答本题的关键是熟练掌握平行四边形的两组对边分别平行且相等 如图所示,已知在 ABCD中, AB=6, BC=4,若 B=45,则 ABCD的面积为( ) A 8 B 12 C 16 D 24 答案: B 试题分析:作 CE AB于点 E,由 B=45可得 BCE为等腰直角三角形,再结合勾股定理可得 CE的长,即可求得结果。 如图,作 CE AB于点 E, B=45, BCE为等腰直角三角形, BE=CE, , BC=4, 解得 , 考点:本题考查的是平行四边形的性质,等腰直角三角形的判定和性质,勾股定理 点评:解答本题的关键是知道

3、有一个角是 45的直角三角形是等腰直角三角形 . 如图所示,在 ABCD中,已知 AC=3cm,若 ABC的周长为 8cm,则平行四边形的周长为( ) A 5cm B 10cm C 16cm D 11cm 答案: B 试题分析:由 AC=3cm, ABC的周长为 8cm,可得 AB+BC的值,根据平行四边形的性质可得 AB=CD, AD=BC,即可求得结果。 ABC的周长 =AB+BC+AC=8cm, AC=3cm, AB+BC=5cm, 四边形 ABCD为平行四边形, AB=CD, AD=BC, AB+CD+AD+BC=10cm, 故选 B. 考点:本题考查的是平行四边形的性质 点评:解答本

4、题的关键是熟练掌握平行四边形的性质:平行四边形的两组对边分别相等 如图所示,在 ABCD中,若 A=45, AD= ,则 AB与 CD之间的距离为( ) A B C D 3 答案: B 试题分析:作 DE AB于点 E,由 A=45,可得 ADE为等腰直角三角形,即得结果。 如图,作 DE AB于点 E, A=45, ADE为等腰直角三角形, AE=DE, , AD= , 解得 , 四边形 ABCD为平行四边形, AB CD, AB与 CD之间的距离为 , 故选 B. 考点:本题考查的是平行四边形的性质,等腰直角三角形的判定和性质,勾股定理 点评:解答本题的关键是熟练掌握两平行线间的距离是两平

5、行线间的垂线段的长度 . 在 ABCD中,若 A=30, AB边上的高为 8,则 BC=( ) A 8 B 8 C 8 D 16 答案: D 试题分析:先画出图形,根据平行四边形的性质可得 C= A=30,再根据含30角的直角三角形的性质即可得到结果。 四边形 ABCD为平行四边形, C= A=30, BE是高, BE=8, BC=2BE=16, 故选 D. 考点:本题考查的是平行四边形的性质,含 30角的直角三角形的性质 点评:解答本题的关键是熟练掌握平行四边形的对角相等, 30角所对的直角边是斜边的一半。 填空题 平行四边形的两组对边分别 _ 答案:平行且相等 试题分析:根据平行四边形的性

6、质即可得到结果。 平行四边形的两组对边分别平行且相等 考点:本题考查的是平行四边形的性质 点评:解答本题的关键是熟练掌握平行四边形的两组对边分别平行且相等 在 ABCD中,若 AB: BC=2: 3,周长为 30cm,则 AB=_cm,BC=_cm 答案:, 9 试题分析:根据平行四边形的性质可得 AB=CD=5,即可求得结果。 四边形 ABCD为平行四边形, AB=CD, AD=BC, AB+CD+AD+BC=30, AB+BC=15, AB: BC=2: 3, AB=6cm, BC=9cm 考点:本题考查的是平行四边形的性质 点评:解答本题的关键是熟练掌握平行四边形的性质:平行四边形的两组

7、对边分别相等 已知 ABCD的周长为 26,若 AB=5,则 BC=_ 答案: 试题分析:根据平行四边形的性质可得 AB=CD=5, AD=BC,即可求得结果。 四边形 ABCD为平行四边形, AB=CD, AD=BC, AB+CD+AD+BC=26, AB+BC=13, AB=5, BC=8 考点:本题考查的是平行四边形的性质 点评:解答本题的关键是熟练 掌握平行四边形的性质:平行四边形的两组对边分别相等 在 ABCD中,若 AB=3cm, AD=4cm,则它的周长为 _cm 答案: 试题分析:根据平行四边形的性质可得 AB=CD=3cm, AD=BC=4cm,即可求得结果。 四边形 ABC

8、D为平行四边形, AB=CD=3cm, AD=BC=4cm, 它的周长为 考点:本题考查的是平行四边形的性质 点评:解答本题的关键是熟练掌握平行四边形的性质:平行四边形的两组对边分别相等 夹在两平行线的平行线段 _,夹在两平行线间 _相等 答案:相等,的垂线段 试题分析:根据平行的特征即可得到结果。 夹在两平行线的平行线段相等,夹在两平行线间的垂线段相等 考点:本题考查的是平行的特征 点评:解答本题的关键是熟练掌握夹在两平行线的平行线段相等,夹在两平行线间的垂线段相等 解答题 如图所示,已知点 E, F在 ABCD的对角线 BD上,且 BE=DF 求证:( 1) ABE CDF;( 2) AE

9、 CF 答案:见 试题分析:根据平行四边形对边平行且相等的性质得到 AB CD且 AB=CD,所以 ABE= CDF,所以两三角形全等;根据全等三角形对应角相等得到 AEB= CFD,所以它们的邻补角相等,根据内错角相等,两直线平行即可得证 ( 1)在 ABCD中, AB CD且 AB=CD, ABE= CDF, BE=DF, ABE CDF( SAS); ( 2) ABE CDF, AEB= CFD, AEF= CFE, AE CF 考点:本题考查的是平行四边形的性质和三角形全等的判定 点评:本题利用平行四边形的性质和三角形全等的判定求解,熟练掌握性质和判定定理并灵活运用是解题的关键 如图所

10、示,分 别过 ABC 的顶点 A, B, C 作对边 BC, AC, AB 的平行线,交点分别为 E, F, D ( 1)请找出图中所有的平行四边形; ( 2)求证: BC= DE 答案:( 1)平行四边形有: ABCD, AEBC, ABFC;( 2)见 试题分析:( 1)根据平行四边形的定义即可得到结果; ( 2)根据平行四边形的对边相等即可得到结果。 ( 1) AB DC, AD BC, AC EF, 平行四边形有: ABCD, AEBC, ABFC; ( 2) ABCD和 AEBC, AE=BC=AD, BC= DE. 考点:本题考查的是平行四边形的判定和性质 点评:解答本题的关键是熟

11、练掌握平行四边形的定义:两组对边分别平行的四边形是平行四边形。 如图所示,在 ABCD中, ABC=60,且 AB=BC, MAN=60请探索 BM, DN与 AB的数量关系,并证明你的结论 答案: BM+DN=AB 试题分析:连结 AC,先由证 ABC=60, AB=BC,证得 ABC 为等边三角形,再结合平行四边形的性质即可得到 ABM CAN,从而得到 BM=CN,即可得到结果。 如图,连结 AC, ABCD, ABC=60, AB=CD, BAD=120, AB CD, MAN=60, MAC+ NAC =60, ABC=60, AB=BC, ABC为等边三角形, BAC= BCA=60, AB=BC=AC, BAM+ NAC =60, BAM= NAC, AB CD, BAC= DCA=60, BAM= NAC, AB=AC, ABC= DCA=60, ABM CAN, BM=CN, AB=CD, BM+DN= CN+DN=CD=AB. 考点:本题考查的是平行四边形的性 质,等边三角形的判定与性质,全等三角形的判定与性质 点评:解答本题的关键是熟练掌握有一个角是 60的等腰三角形是等边三角形。

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1