1、2010年河南省焦作市高一下学期数学必修 4水平测试 选择题 等于 A B C D 答案: A 如果函数 的图像关于点 中心对称,那么 的最小值为 A B C - D 答案: 函数 的单调递减区间是 A B C D 答案: D 有下列四种变换方式 : 向左平移 ,再将横坐标变为原来的 (纵坐标不变); 横坐标变为原来的 (纵坐标不变) ,再向左平移 ; 横坐标变为原来的 (纵坐标不变) ,再向左平移 ; 向左平移 ,再将横坐标变为原来的 (纵坐标不变); 其中能将正弦曲线 的图像变为 的图像的是 A 和 B 和 C 和 D 和 答案: B 设四边形 ABCD中,有 = ,且 | |=| |,则
2、这个四边形是 A平行四边形 B矩形 C等腰梯形 D菱形 答案: C 函数 是 A最小正周期为 的奇函数 B最小正周期为 的偶函数 C最小正周期为 的奇函数 D最小正周期为 的偶函数 答案: A 已知 A B C D 答案: A 化简 的结果是 A B C D 答案: B 函数 y=sin2x的最小正周期是 A BC D 答案: A 若 且 是,则 是 A第一象限角 B第二象限角 C第三象限角 D第四象限角 答案: C 填空题 已知在平面直角坐标系中, A(-2,0),B(1,3),O 为原点,且 ,(其中 + =1, , 均为实数),若 N(1,0),则 的最小值是_. 答案: 函数 的最小值
3、是 _. 答案: 已知 tan =4,tan =3, ,则 tan(a+ )=_. 答案: 已知向量 , , ,若 ,则 = 答案: 将 化为弧度为 _. 答案: 解答题 ( 10分)求值:( 1) ; ( 2) 答案:( 1) (5分 ) ( 2) ( 10分) ( 10分)已知 , 计算: ( 1) ( 2) 答案:( 1) ( 2) ( 10分)已知向量 , 的夹角为 , 且 , , 若 , , 求 ( 1) ; ( 2) . 答案:( 1) 1 ( 2) ( 10分)已知函数 . ( 1)求 的最小正周期; ( 2)求 在区间 上的最大值和最小值以及取得最大值、最小值时 x的值 . 答案:( 1) ( 2) 在区间 上的最大值为 1,此时 最小值为 ,此时(附加题)( 10分)已知函数 , 的最大值是 1,其图像经过点 ( 1)求 的式; ( 2)已知 ,且 , ,求 的值 答案:( 1) ( 2) (附加题)( 10分)已知 R, k R), ( 1)若 ,且 ,求 x的值; ( 2)若 ,是否存在实数 k,使 若存在,求出 k的取值范围;若不存在,请说明理由。 答案:( 1) ( 2) k