ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:437.22KB ,
资源ID:321475      下载积分:1000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-321475.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013-2014学年山东省泰安一中高一下学期期末模拟检测一数学试卷与答案(带解析).doc)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

2013-2014学年山东省泰安一中高一下学期期末模拟检测一数学试卷与答案(带解析).doc

1、2013-2014学年山东省泰安一中高一下学期期末模拟检测一数学试卷与答案(带解析) 选择题 下列命题正确的是 ( ) A小于 的角一定是锐角 B终边相同的角一定相等 C终边落在直线 上的角可以表示为 , D若 ,则角 的正切值等于角 的正切值 答案: D 试题分析:小于 的角可以是锐角、零角及负角,故 错;终边相同的角相差 的整数倍,故 错;终边落在直线 上的角可以表示为,故 错; 正确 . 故选 D. 考点:三角函数的概念的应用 . 在区间 上随机取一个数 , 的值介于 0到 之间的概率为 ( ) A B C D 答案: A 试题分析:由 ,可得 或 ,即 或,则 的值介于 到 之间的概率

2、为: . 故选 A. 考点:几何概型的问题 . 直线 被圆 截得的弦长为 ,则实数 的值为 ( ) A 或 B 或 C 或 D 或 答案: D 试题分析:由圆 ,则圆心为: ,半径为: , 圆心到直线 的距离为: ,又 ,即,解得 或 . 故选 D. 考点:直线和圆的位置关系;点到直线距离公式 . 平面向量 , , ( ),且 与 的夹角等于与 的夹角,则 ( ) A B C D 答案: D 试题分析:由 ,又 与 的夹角等 与 的夹角可得,则有 ,解得 . 故选 D. 考点:平面向量数量积及夹角的求解 . 设 是将函数 向左平移 个单位得到的,则 等于 ( ) A BC D 答案: D 试题

3、分析:由 向左平移 个单位得到的是 ,则 . 故选 D. 考点:三角函数图像的平移变换 . 为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前 3个小组的频率之比为 1 2 3,第 1小组的频数为 6,则报考飞行员的学生人数是 ( ) A 36 B 40 C 48 D 50 答案: C 试题分析:设报考飞行员的人数为 ,根据前 3个小组的频率之比为 ,可设前三小组的频率分别为 ;由题意可知所求频率和为 1,即,解得 ,则 ,解得 . 故选 C. 考点:频率分布直方图 . 设 且 则( ) A B C D 答案: C 试题分析:

4、由,又 , ,故 ,即. 故选 C. 考点:二倍角公式的应用 . 某校五四演讲比赛中,七位评委为一选手打出的分数如下: 90 86 90 97 93 94 93 去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A B C D 答案: B 试题分析:由题意知,去掉一个最高分 和一个最低分 后,所剩数据的平均数为 ;方差为故选 B. 考点:样本平均数和方差的计算 . 若向量 满足: 则 ( ) A 2 B C 1 D 答案: B 试题分析:由题意易知: 即 , ,即 . 故选 B. 考点:向量的数量积的应用 . 某单位有职工 750人,其中青年职工 350人,中年职工 250人,

5、老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 .若样本中的中年职工为 5人,则样本容量为 ( ) A 7 B 15 C 25 D 35 答案: B 试题分析:由题意知,此单位青年职工、中年职工、老年职工的人数比例为,而采用分层抽样抽取样本,样本中的中年职工为 人,则青年职工和老年职工的人数分别为 人和 人,所以样本的容量为 人 . 故选 B. 考点:分层抽样的应用 . 填空题 已知 a 4, b 8, a与 b的夹角为 120,则 2a-b . 答案: 试题分析:由 ,则. 故答案:为 . 考点:平面向量的模长的求解;平面向量的数量积 . 若方程 表示圆心在第四

6、象限的圆,则实数 的范围为 . 答案: 试题分析:由方程 可得,因为圆心 在第四象限,则有 ,解得 . 故答案:为 . 考点:圆的方程 . 若将函数 的图像向右平移 个单位,所得图像关于 轴对称, 则 的最小正值是 _. 答案: 试题分析:函数 的图象向右平移 个单位后得到的图象,由题意可得, ,即,所以当 时, ,即 的最小正值是 . 故答案:为 . 考点:三角函数图象的平移变换 . 执行下图所示的程序框图,若输入 ,则输出 的值为 . 答案: 试题分析:当 时, ;当 时, ;当时, ,此时 . 故答案:为 . 考点:程序框图的应用 . 解答题 已知下列命题: 函数 在第一象限是增函数;

7、函数 是偶函数; 函数 的一个对称中心是( , 0); 函数 在闭区间 上是增函数 ; 写出所有正确的命题的题号: . 答案: 试题分析: 取 ,但 ,即函数 在第一象限不是增函数,故 错; 由函数 是奇函数,故 错 . 当 时, ,所以 是函数 的一个对称中心,故 正确; 当 时 ,当 时, ,所以 在区间是增函数错误,故 错 . 故答案:为 . 考点:命题真假的判断;三角函数的图像与性质 . 已知圆 与直线 相切于点 ,其圆心在直线上,求圆 的方程 答案: 试题分析:设圆的方程为 ,再设过圆心及点 且与直线垂直的直线 ,即可求出直线 ,再将圆心带入直线 和直线可列方程组,即可求得圆心坐标,

8、最后再将点 带入圆的方程即可求出半径 . 试题:设圆的方程为 ,其中圆心 ,半径为 ,由题意知圆心在过点 且与直线 垂直的直线 上,设上,把点 代入 求得 .由,得圆心 . .所以圆 的方程为. 考点:圆的方程 . 为了调查甲、乙两种品牌商品的市场认可度,在某购物网点随机选取了 14天,统计在某确定时间段的销量,得如下所示的统计图,根据统计图求: ( 1)甲、乙两种品牌商品销量的中位数分别是多少? ( 2)甲品牌商品销量在 20, 50间的频率是多少? ( 3)甲、乙两个品牌商品哪个更受欢迎?并说明理由 . 答案: (1) 甲、乙两种品牌商品销量的中位数分别是 ; ( 2)甲品牌商品销量在 间

9、的频率 ; ( 3)甲品牌商品更受欢迎 试题分析: (1)利用茎叶图能求出甲、乙两种品牌商品销量的中位数; ( 2)甲品牌商品销量在 间的数据有 共 5个,由此能求出甲品牌商品销量在 间的频率 . (3)求出甲品牌商品的日平均销售量和乙品牌商品的日平均销售量,由此能求出结果 . 试题:( 1)甲的数据由小到大为: 乙的数据由小到大为: 所以甲、乙两种品牌商品销量的中位数分别是 . (2) 甲品牌商品销量在 间的数据有 共 5个, 所以甲品牌商品销量在 间的频率 . (3) 解一:甲品牌商品的日平均销售量为: , 乙品牌商品的日平均销售量为: , 由 知甲品牌商品更受欢迎 . 考点:中位数、频率

10、的求法;平均数的应用 . 已知点 , ,点 在 单位圆上 . (1)若 ( 为坐标原点 ),求 与 的夹角; (2)若 ,求点 的坐标 . 答案:( 1) 与 的夹角为 或 ( 2)点 的坐标为或 试题分析:( 1)由已知易得 ,可求得 ,而由 ,由此能求出 与 的夹角 . ( 2)由 及 可得到 ,即可求得点 的坐标 . 试题:( 1)由 且 ,又 ,得 ,即 ,解得. 所以 与 的夹角为 或 . ( 2) 由 得, 即由 ,解得 或 所以点 的坐标为 或 . 考点:向量夹角的求法;数量积的应用 . 甲乙两人各有 个材质、大小、形状完全相同的小球,甲的小球上面标有五个数字,乙的小球上面标有

11、五个数字 .把各自的小球放入两个不透明的口袋中,两人同时从各自的口袋中随机摸出 个小球 .规定:若甲摸出的小球上的数字是乙摸出的小球上的数字的整数倍,则甲获胜,否则乙获胜 . (1)写出基本事件空间 ; (2)你认为 “规定 ”对甲、乙二人公平吗?说出你的理由 . 答案:( 1)基本事件空间: ( 2)规定是不公平的(理由见) . 试题分析:( 1)由题意易求得基本事件空间 . ( 2)分别求出甲、乙各自获胜的概率,若概率相等,则 “规定 ”对甲乙二 人公平;若概率不相等,则 “规定 ”对甲乙二人不公平 . 试题:( 1)用 表示发生的事件,其中甲摸出的小球上的数字为 ,乙摸出的小球上的数字为

12、 .则基本事件空间: ( 2)由( 1)可知,基本事件总数 个,设甲获胜的事件为 ,它包括的基本事件有 ,共含基本事件个数 个 . 所以 .因此乙获胜的概率为 ,即乙获胜的概率大,这个规定是不公平的 . 考点:随机事件的概率及其应用 . 已知函数 , , 在一个周期内,当 时, 有最大值为 ,当 时, 有最小值为 (1)求函数 表达式; (2)若 ,求 的单调递减区间 . 答案:( 1) ( 2) 的单调减区间为. 试题分析:( 1)由函数 的最值可求得 ,利用半个周期可求得 ,最后再将点 代入 即可求得 ,即函数 的式可求出 . ( 2)先求得函数 的式,再利用正弦型函数的单调性即可求得 的

13、单调减区间 . 试题:( 1) 当 时, 有最大值为 ,当 时, 有最小值为 . ,把点 代入 解得 , 所以函数 ( 2)由 , 由 可得: , 即 的单调减区间为 . 考点:三角函数式的求法;三角函数的性质 . 已知向量 a , b , c ,其中 . (1)若 ,求函数 b c的最小值及相应的 的值; (2)若 a与 b的夹角为 ,且 a c,求 的值 . 答案:( 1)函数 的最小值为 ,相应的 的值为 ( 2) 试题分析:( 1)由已知易求得 ,此时再换元令 可得 ,即可求得 ,然后再反求此时对应的 的值,可得结果 . ( 2)利用 与 的夹角为 ,可求得 ,再根据 可得,然后联立两式即可求得结果 . 试题:( 1) ,又 令 则 ,且 当 时, ,此时 即 , 又 , ,即 所以函数 的最小值为 ,相应的 的值为 . ( 2) 与 的夹角为 , . , ,即 又 , . 化简得 .将 代入可得 , . 考点:三角恒等变换;换元法求最值 .

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1