ImageVerifierCode 换一换
格式:PPT , 页数:17 ,大小:367.50KB ,
资源ID:373158      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-373158.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(A Hidden Markov Model for Protein Secondary Structure .ppt)为本站会员(王申宇)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

A Hidden Markov Model for Protein Secondary Structure .ppt

1、A Hidden Markov Model for Protein Secondary Structure Prediction,Wei-Mou Zheng Institute of Theoretical Physics Academia Sinica PO Box 2735, Beijing 100080 ,Outline,Protein structure A brief review of secondary structure prediction Hidden Markov model: simple-minded Hidden Markov model: realistic Di

2、scussion References,Protein sequences are written in 20 letters (20 Naturally-occurring amino acid residues): AVCDE FGHIW KLMNY PQRSTHydrophobicCharged+-Polar,Cis-,Trans-,Residues form a directed chain,Rasmol ribbon diagram of GB1 Helix (pink), sheets (yellow) and coil (grey) Hydrogen-bond network3D

3、 structure secondary structure written in three letters:H, E, C. H: E: C = 34.9: 21.8: 43.3,Bayes formulaCount of Generally, P(x, y) = P(x|y)P(y),Protein sequence A, ai, i=1,2,n Secondary structure sequence S, si, i=1,2,nSecendary structure prediction: 1D amino acid sequences 1D secondary structure

4、sequence An old problem for more than 30 years Inference of S from A: P(S |A )1. Simple Chou-fasman approachChou-Fasmans propensity of amino acid to conformational state+ independence approximation,Parameter Training Propensities q(a,s)Counts (20x3) from a database: N(a, s)sum over a N(s),sum over s

5、 N(a),sum over a and s Nq(a,s) = N(a,s) N / N(a) N(s).,2. Garnier-Osguthorpe-Robson (GOR) window versionConditional Independency Weight matrix (20x17)x3 P(W|s) 3. Improved GOR (20x20x16x3, to include pair correlation),Hidden Markov Model (HMM): simple-minded Bayesian formula: P(S|A) = P(S,A)/P(A) P(

6、S,A) = P(A|S) P(S) Simple version emitting ai at si Markov chain according to P(a|s) For hidden sequenceForward and backward functions,s1,s2,s3,a1,a2,a3,Initial conditions and recursion relationsPartition functionLinear algorithm: Dynamic programmingBaum-Welch (sum) & Viterbi (max),Prob(si=s, si+1=s

7、) = Ai(s) tss P(ai+1|s) Bi+1(s)/ZProb(si:j),Hidden Markov Model: Realistic 1) Strong correlation in conformational states: at least two consicutive E and three consicutive Hrefined conformational states (243 75) 2) Emission probabilities improved window scores Proportion of accurately predicted site

8、s 70% (compared with 65% for prediction based on a single sequence)No post-prediction filteringIntegrated (overall) estimation of refined conformation statesMeasure of prediction confidence,Discussions,HMM using refined conformational states and window scores is efficient for protein secondary struc

9、ture prediction. Better score system should cover more correlation between conformation and sequence. Combining homologous information will improve the prediction accuracy. From secondary structure to 3D structure (structure codes: discretized 3D conformational states),ReferencesLawrence R Rabiner,

10、A tutorial on hidden Markov models and selected appllications in speech recognition Proceeding of the IEEE, 77 (1989) 257-286Burkhard Rost Protein Secondary Structure Prediction Continues to Rise Journal of Structural Biology 134, 204218 (2001),The End,Small,Hydrophobic,Polar,Aromatic,Aliphatic,Positive,Negative,Tiny,P,V,I,F,Y,W,T,L,H,K,R,D,G,A,C,S,N,E,Q,M,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1