A Hidden Markov Model for Protein Secondary Structure .ppt

上传人:王申宇 文档编号:373158 上传时间:2018-10-05 格式:PPT 页数:17 大小:367.50KB
下载 相关 举报
A Hidden Markov Model for Protein Secondary Structure .ppt_第1页
第1页 / 共17页
A Hidden Markov Model for Protein Secondary Structure .ppt_第2页
第2页 / 共17页
A Hidden Markov Model for Protein Secondary Structure .ppt_第3页
第3页 / 共17页
A Hidden Markov Model for Protein Secondary Structure .ppt_第4页
第4页 / 共17页
A Hidden Markov Model for Protein Secondary Structure .ppt_第5页
第5页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、A Hidden Markov Model for Protein Secondary Structure Prediction,Wei-Mou Zheng Institute of Theoretical Physics Academia Sinica PO Box 2735, Beijing 100080 ,Outline,Protein structure A brief review of secondary structure prediction Hidden Markov model: simple-minded Hidden Markov model: realistic Di

2、scussion References,Protein sequences are written in 20 letters (20 Naturally-occurring amino acid residues): AVCDE FGHIW KLMNY PQRSTHydrophobicCharged+-Polar,Cis-,Trans-,Residues form a directed chain,Rasmol ribbon diagram of GB1 Helix (pink), sheets (yellow) and coil (grey) Hydrogen-bond network3D

3、 structure secondary structure written in three letters:H, E, C. H: E: C = 34.9: 21.8: 43.3,Bayes formulaCount of Generally, P(x, y) = P(x|y)P(y),Protein sequence A, ai, i=1,2,n Secondary structure sequence S, si, i=1,2,nSecendary structure prediction: 1D amino acid sequences 1D secondary structure

4、sequence An old problem for more than 30 years Inference of S from A: P(S |A )1. Simple Chou-fasman approachChou-Fasmans propensity of amino acid to conformational state+ independence approximation,Parameter Training Propensities q(a,s)Counts (20x3) from a database: N(a, s)sum over a N(s),sum over s

5、 N(a),sum over a and s Nq(a,s) = N(a,s) N / N(a) N(s).,2. Garnier-Osguthorpe-Robson (GOR) window versionConditional Independency Weight matrix (20x17)x3 P(W|s) 3. Improved GOR (20x20x16x3, to include pair correlation),Hidden Markov Model (HMM): simple-minded Bayesian formula: P(S|A) = P(S,A)/P(A) P(

6、S,A) = P(A|S) P(S) Simple version emitting ai at si Markov chain according to P(a|s) For hidden sequenceForward and backward functions,s1,s2,s3,a1,a2,a3,Initial conditions and recursion relationsPartition functionLinear algorithm: Dynamic programmingBaum-Welch (sum) & Viterbi (max),Prob(si=s, si+1=s

7、) = Ai(s) tss P(ai+1|s) Bi+1(s)/ZProb(si:j),Hidden Markov Model: Realistic 1) Strong correlation in conformational states: at least two consicutive E and three consicutive Hrefined conformational states (243 75) 2) Emission probabilities improved window scores Proportion of accurately predicted site

8、s 70% (compared with 65% for prediction based on a single sequence)No post-prediction filteringIntegrated (overall) estimation of refined conformation statesMeasure of prediction confidence,Discussions,HMM using refined conformational states and window scores is efficient for protein secondary struc

9、ture prediction. Better score system should cover more correlation between conformation and sequence. Combining homologous information will improve the prediction accuracy. From secondary structure to 3D structure (structure codes: discretized 3D conformational states),ReferencesLawrence R Rabiner,

10、A tutorial on hidden Markov models and selected appllications in speech recognition Proceeding of the IEEE, 77 (1989) 257-286Burkhard Rost Protein Secondary Structure Prediction Continues to Rise Journal of Structural Biology 134, 204218 (2001),The End,Small,Hydrophobic,Polar,Aromatic,Aliphatic,Positive,Negative,Tiny,P,V,I,F,Y,W,T,L,H,K,R,D,G,A,C,S,N,E,Q,M,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学课件 > 大学教育

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1