ImageVerifierCode 换一换
格式:PPT , 页数:13 ,大小:171.50KB ,
资源ID:378033      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-378033.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Adaptive Information Processing- An Effective Way to Improve .ppt)为本站会员(fuellot230)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

Adaptive Information Processing- An Effective Way to Improve .ppt

1、Adaptive Information Processing: An Effective Way to Improve Perceptron Predictors,Hongliang Gao Huiyang Zhou,University of Central Florida,2,Information system model,Source (program),Information:Br addressBr historyBr typeOther run time info.,Informationvector,Information processor,PredictorFSMsPer

2、ceptrons 2,Information system model by Chen et. al. ASPLOS-VII. Key observations Shortcomings: Fixed information vector while different workloads/branches need different information data. Perceptron weights Correlation Assemble information vector to maximize correlation,Our contribution Re-assemble

3、the information vector based on correlation (weights) Performed at a coarse grain, so it is not latency critical,University of Central Florida,3,Adaptive Information Processing,Profile-directed adaptation Correlation-directed adaptation,Perceptron Predictor,Fixed,GHR,LHR,PC,Information,University of

4、 Central Florida,4,Profile-directed adaptation, ,w0 table,wt table 1,wt table 2,wt table N,Prediction = sign(y),y,GHR,LHR table,weights,weights,weights,PC,Information,Information vector,4,Update Logic,University of Central Florida,5,Profile-directed adaptation,Workload Detector,type, ,INT,FP,MM,SERV

5、,Table 1,Table 2,Table N,G0:3 XOR G4:7,University of Central Florida,6,Workload Detector,Detection criteria SERV: a large number of static branchesFP: a small number of static branches,a high number of floating point operation, and a high number of instructions using XMM registersMM: a medium number

6、 of static branches, a medium number of floating point operation, and a medium number of instructions using XMM registersINT: default,Workload Detector,type,Source (program),Run time info:# of fp instsXMM accesses# of static br,University of Central Florida,7,Correlation-directed adaptation, , ,w0 t

7、able,wt table 1,wt table 2,wt table N,Prediction = sign(y),y,GHR,LHR table,weights,weights,weights,PC,Information,Information vector,type,4,type,4,Workload Detector,type,Update Logic,University of Central Florida,8,Correlation-directed adaptation, , ,GHR,LHR table,weights,weights,weights,PC,Informat

8、ion,Information vector,4,4,type,4,type,4,Information feeding logic,MUX2,4,4,MUX1,4,4,type (INT),Workload Detector,type,PC,LHR,Sum1,Sum2,SumN,Large Sum1 = strong correlation with PC bits Small SumN = weak correlation with certain GHR bits cN PC = more PC bits,Table 1,Table 2,Table N,PC,University of

9、Central Florida,9,Overall scheme,Loop branch predictor,PC,tag,loop count,taken count,confidence,LRU,PC,Bias branch predictor,GHR,LHR table,PC,MAC perceptron predictor,workload detector,runtime info.,initial (predict NT),always NT (predict NT),always Taken(predict T),Not biased (use other predictors)

10、,loop hit,loop prediction,loop hit,NT,Taken,loop prediction,prediction,prediction,University of Central Florida,10,Summary,Observations Different workloads/branches need different information. Perceptron weights Correlation Contributions Profile-directed adaptation Correlation-directed adaptation Re

11、ducing aliasing from bias and loop branches Result Significant improvement,Thank you and Questions?,University of Central Florida,12,References,1 I. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of branch prediction via data compression”, Proc. of the 7th Int. Conf. on Arch. Support for Programm

12、ing Languages and Operating Systems (ASPLOS-VII), 1996. 2 D. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons”, Proc. of the 7th Int. Symp. on High Perf. Comp. Arch (HPCA-7), 2001. 3 D. Jimenez and C. Lin, “Neural methods for dynamic branch prediction”, ACM Trans. on Computer Systems,

13、 2002. 4 S. MacFarling, “Combining branch predictors”, Technical Report, DEC, 1993. 5 A. Seznec, “Revisiting the perceptron predictor”, Technical Report, IRISA, 2004. 6 T.-Y. Yeh and Y. Patt, “Alternative implementations of two-level adaptive branch prediction”, Proc. of the 22nd Int. Symp. on Comp. Arch (ISCA-22), 1995.,University of Central Florida,13,Predictor configuration,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1