Adaptive Information Processing- An Effective Way to Improve .ppt

上传人:fuellot230 文档编号:378033 上传时间:2018-10-09 格式:PPT 页数:13 大小:171.50KB
下载 相关 举报
Adaptive Information Processing- An Effective Way to Improve .ppt_第1页
第1页 / 共13页
Adaptive Information Processing- An Effective Way to Improve .ppt_第2页
第2页 / 共13页
Adaptive Information Processing- An Effective Way to Improve .ppt_第3页
第3页 / 共13页
Adaptive Information Processing- An Effective Way to Improve .ppt_第4页
第4页 / 共13页
Adaptive Information Processing- An Effective Way to Improve .ppt_第5页
第5页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Adaptive Information Processing: An Effective Way to Improve Perceptron Predictors,Hongliang Gao Huiyang Zhou,University of Central Florida,2,Information system model,Source (program),Information:Br addressBr historyBr typeOther run time info.,Informationvector,Information processor,PredictorFSMsPer

2、ceptrons 2,Information system model by Chen et. al. ASPLOS-VII. Key observations Shortcomings: Fixed information vector while different workloads/branches need different information data. Perceptron weights Correlation Assemble information vector to maximize correlation,Our contribution Re-assemble

3、the information vector based on correlation (weights) Performed at a coarse grain, so it is not latency critical,University of Central Florida,3,Adaptive Information Processing,Profile-directed adaptation Correlation-directed adaptation,Perceptron Predictor,Fixed,GHR,LHR,PC,Information,University of

4、 Central Florida,4,Profile-directed adaptation, ,w0 table,wt table 1,wt table 2,wt table N,Prediction = sign(y),y,GHR,LHR table,weights,weights,weights,PC,Information,Information vector,4,Update Logic,University of Central Florida,5,Profile-directed adaptation,Workload Detector,type, ,INT,FP,MM,SERV

5、,Table 1,Table 2,Table N,G0:3 XOR G4:7,University of Central Florida,6,Workload Detector,Detection criteria SERV: a large number of static branchesFP: a small number of static branches,a high number of floating point operation, and a high number of instructions using XMM registersMM: a medium number

6、 of static branches, a medium number of floating point operation, and a medium number of instructions using XMM registersINT: default,Workload Detector,type,Source (program),Run time info:# of fp instsXMM accesses# of static br,University of Central Florida,7,Correlation-directed adaptation, , ,w0 t

7、able,wt table 1,wt table 2,wt table N,Prediction = sign(y),y,GHR,LHR table,weights,weights,weights,PC,Information,Information vector,type,4,type,4,Workload Detector,type,Update Logic,University of Central Florida,8,Correlation-directed adaptation, , ,GHR,LHR table,weights,weights,weights,PC,Informat

8、ion,Information vector,4,4,type,4,type,4,Information feeding logic,MUX2,4,4,MUX1,4,4,type (INT),Workload Detector,type,PC,LHR,Sum1,Sum2,SumN,Large Sum1 = strong correlation with PC bits Small SumN = weak correlation with certain GHR bits cN PC = more PC bits,Table 1,Table 2,Table N,PC,University of

9、Central Florida,9,Overall scheme,Loop branch predictor,PC,tag,loop count,taken count,confidence,LRU,PC,Bias branch predictor,GHR,LHR table,PC,MAC perceptron predictor,workload detector,runtime info.,initial (predict NT),always NT (predict NT),always Taken(predict T),Not biased (use other predictors)

10、,loop hit,loop prediction,loop hit,NT,Taken,loop prediction,prediction,prediction,University of Central Florida,10,Summary,Observations Different workloads/branches need different information. Perceptron weights Correlation Contributions Profile-directed adaptation Correlation-directed adaptation Re

11、ducing aliasing from bias and loop branches Result Significant improvement,Thank you and Questions?,University of Central Florida,12,References,1 I. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of branch prediction via data compression”, Proc. of the 7th Int. Conf. on Arch. Support for Programm

12、ing Languages and Operating Systems (ASPLOS-VII), 1996. 2 D. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons”, Proc. of the 7th Int. Symp. on High Perf. Comp. Arch (HPCA-7), 2001. 3 D. Jimenez and C. Lin, “Neural methods for dynamic branch prediction”, ACM Trans. on Computer Systems,

13、 2002. 4 S. MacFarling, “Combining branch predictors”, Technical Report, DEC, 1993. 5 A. Seznec, “Revisiting the perceptron predictor”, Technical Report, IRISA, 2004. 6 T.-Y. Yeh and Y. Patt, “Alternative implementations of two-level adaptive branch prediction”, Proc. of the 22nd Int. Symp. on Comp. Arch (ISCA-22), 1995.,University of Central Florida,13,Predictor configuration,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教学课件 > 大学教育

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1