ImageVerifierCode 换一换
格式:PDF , 页数:30 ,大小:1.27MB ,
资源ID:430164      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-430164.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(API TR 2577-2018 Performance of Full-bore Vortex Meters for Measurement of Liquid Flows (FIRST EDITION).pdf)为本站会员(王申宇)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

API TR 2577-2018 Performance of Full-bore Vortex Meters for Measurement of Liquid Flows (FIRST EDITION).pdf

1、Performance of Full-bore Vortex Meters for Measurement of Liquid FlowsAPI TECHNICAL REPORT 2577 FIRST EDITION, JULY 2018Special NotesAPI publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be r

2、eviewed.Neither API nor any of APIs employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or respons

3、ibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of APIs employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.API publications

4、may be used by anyone desiring to do so. Every effort has been made by the Institute to ensure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any lia

5、bility or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publ

6、ications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.Any manufacturer marki

7、ng equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.All

8、rights reserved. No part of this work may be reproduced, translated, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L S

9、treet, NW, Washington, DC 20005.Copyright 2018 American Petroleum InstituteForewordNothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither

10、 should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.The verbal forms used to express the provisions in this specification are as follows: the term “shall” denotes a minimum requirement in order to conform to the standard;

11、 the term “should” denotes a recommendation or that which is advised but not required in order to conform to the standard; the term “may” is used to express permission or a provision that is optional; the term “can” is used to express possibility or capability.Informative elementsAs used in a standa

12、rd, “informative” denotes elements that identify the document, introduce its content, and explain its background, development, and its relationship with other documents or provide additional information intended to assist the understanding or use of the document.Normative elementsAs used in a standa

13、rd, “normative” denotes elements that describe the scope of the document and that set out provisions that are required to implement the standard.This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is

14、designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L St

15、reet, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of u

16、p to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.Suggested revisions are invite

17、d and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standardsapi.org.iiiContentsPage1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18、 . . 12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Terms, Definitions, and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19、. . . . . . . . . . . . . 13.11 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Field of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Test Matrix for Full-bore Vortex Meter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.1 Baseline Calibration at the Calibration Facility . . . . . . . . . . . . . . .

21、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35.2 Field Testing of Vortex Meter with Hydrocarbon Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56.1 4-in. (100-mm) Vortex Meter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4-in. (100-mm) Vortex Meter Performance in the Field with Hydrocarbon F

23、luids . . . . . . . . . . . . . . . . . . . . 88 2-in. (50-mm) Vortex Meter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Additional Test Results from Other Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24、 . . . . . . . . . . . . . . . . . 1710 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Annex A (informative) Plots of Baseline Proving Data of 4-in. (100-mm) Vortex Meters . . . . .

25、 . . . . . . . . . . . . 18Annex B (informative) Experimental Data from OIML D 25 Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figures1 Schematic Setup at the Calibration Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26、. . . . . . . 32 Calibration Facility Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Portable Proving Operation in the Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27、. . . . . . . . . . 44 Typical Shape of a Meter Factor Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Composite Plot of Meter Factors (MF) of Five Vortex Meters for Master Meter Proves . . . . . . . . . . . . . . . 76 Composite Pl

28、ot of Vortex Meter Repeatability for Master Meter Proves . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Composite Plot of Difference in Meter Factor for Five Vortex Meter Data Calibrated by Master Meter and Small Volume Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29、 . . . . . . . . . . . . . . . . . . . . . . 88 Performance of Meter A and Meter D (Meter Factor vs Flow Rate) for Hydrocarbon Flows . . . . . . . . . . 119 Performance of Meter A and Meter D (Meter Factor vs API Gravity Hydrocarbon Fluid) . . . . . . . . . . . . . 1110 Performance of Meter D (Meter

30、 Factor vs Flow Rate) for Hydrocarbon Fluids . . . . . . . . . . . . . . . . . . . . . 1211 Performance of Meter D (Meter Factor vs Degree API of Hydrocarbon Fluids) . . . . . . . . . . . . . . . . . . . . 1212 Meter A Performance at Different Flow Rates . . . . . . . . . . . . . . . . . . . . . . .

31、 . . . . . . . . . . . . . . . . . . . . . . . . . 1313 Performance of Meter A (Meter Factor vs Degree API of Hydrocarbon Fluids) . . . . . . . . . . . . . . . . . . . . 1314 Performance of Meter E (Meter Factor vs Flow Rate) for Hydrocarbon Fluids . . . . . . . . . . . . . . . . . . . . . 1415 Perf

32、ormance of Meter E (Repeatability on Points vs Degree API of the Hydrocarbon Fluid) . . . . . . . . . 1416 Meter Factor vs Flow Rate for 2-in. (50-mm) Meter F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517 Meter Factor vs Flow Rate for 2-in. (50-mm) Meter G

33、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518 Meter Factor vs Flow Rate for 2-in. (50-mm) Meter H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1619 Composite Calibration Data of 2-in. (50-mm) Meter F, Meter G, and Mete

34、r H Calibrated by Small Volume Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16A.1 Meter Factor of Vortex Meter A by SVP and Turbine as the Master Meter . . . . . . . . . . . . . . . . . . . . . . . . . 18A.

35、2 Meter Factor of Vortex Meter-B by SVP and Turbine as the Master Meter . . . . . . . . . . . . . . . . . . . . . . . . . 18A.3 Meter Factor vs Flow rate of Vortex Meter C by SVP and Turbine as the Master Meter . . . . . . . . . . . . . . 19A.4 Meter Factor of Vortex Meter D by SVP and Turbine as th

36、e Master Meter . . . . . . . . . . . . . . . . . . . . . . . . . 19vContentsPageA.5 Meter Factor of Vortex Meter E by SVP and Turbine as the Master Meter . . . . . . . . . . . . . . . . . . . . . . . . . 20B.1 Relation between Strouhal Number and Reynolds Number for a Vortex Meter . . . . . . . . .

37、. . . . . . . . . . . 21B.2 Meter Accuracy vs Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Tables1 Summary Data of all Master Meter Proves at the Calibration Facility . . . . . . . . . . . . . . . . . . . . . . . . . .

38、. . . 62 Summary Data of Meter A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Summary Data of Meter B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39、. . . . . . . . . . 94 Summary Data of Meter C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Summary Data of Meter D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40、. . . . . . . . . . . . . . . . 106 Summary Data of Meter E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10viIntroduction This technical report documents performance characteristics of several commercially available v

41、ortex meters for liquid flows. Although vortex meters are available in full-bore and reduced-bore designs, performance verification and characterization were limited to full-bore liquid vortex meters only, due to the inadequacy of test data available in the public domain for reduced-bored designs an

42、d lack of funding to develop a field test database for hydrocarbon liquids. Vortex meter test results reported in this document are of nominal 2-in. (50-mm) and 4-in. (100-mm) meter sizes. Five vortex meter vendors participated in the laboratory and field tests with hydrocarbon liquid of 4-in. (100-

43、mm) meters, while only three manufacturers participated in the 2-in. (50-mm) tests. Since the flow rate through 2-in. (50-mm) vortex meters is relatively low, its use in field trials with hydrocarbon fluids was not possible, as it would delay and limit the normal operation of the field meter. Theref

44、ore, 2-in. (50-mm) vortex meter tests were limited to performance verification at the laboratory test facility with water only.The baseline performance of each meter was established under controlled flowing conditions of the laboratory test facility, where the test fluid was water. Commercially avai

45、lable 4-in. (100-mm) vortex meters output may have a manufactured pulse, where the pulse output is used during proving of the meter to establish the meter factor and repeatability of the meter factor. Also, due to time variations of shed vortices that result from hydrodynamic instability and current

46、 limitations of the available sensor technology, the raw pulse signal of vortex meters require time averaging. The reference flow rate at the proving facility was established by a Small Volume Prover (SVP), also referred to as Captive Displacement Prover (CDP), because proving of field meters for hy

47、drocarbon fluids was performed by portable proving systems that used SVP. The time of the proving run of a SVP normally used to calibrate 4-in. (100-mm) meters was inadequate for the time-averaged proving run required for the flow rate range of the liquid vortex meters. The laboratory proving setup

48、duplicated the portable field proving system. In order to achieve repeatable meter factors (MF) and laboratory and field proving of vortex meters, the MF of the meter being tested was established by utilizing the transfer proving method. The master meter (MM) for the transfer proving was the liquid

49、turbine meter, whose MF was established by the SVP. At the proving facility, the MM, meter being tested, and SVP, were installed in series.In the field, the performance of the vortex meter for hydrocarbon flows were established against the field flowmeter as the master meter, after the field meter was flow calibrated by the portable proving system. Therefore, variations in flow rate and properties of hydrocarbon fluids for vortex meter were limited as vortex meter could only be tested for the flow rates and properties of the hydrocarbon fluids for which the field meter were being ca

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1