ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:71.52KB ,
资源ID:432894      下载积分:2000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-432894.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ANSI ASTM F1720-2014 Standard Test Method for Measuring Thermal Insulation of Sleeping Bags Using a Heated Manikin.pdf)为本站会员(outsidejudge265)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ANSI ASTM F1720-2014 Standard Test Method for Measuring Thermal Insulation of Sleeping Bags Using a Heated Manikin.pdf

1、Designation: F1720 14 An American National StandardStandard Test Method forMeasuring Thermal Insulation of Sleeping Bags Using aHeated Manikin1This standard is issued under the fixed designation F1720; the number immediately following the designation indicates the year oforiginal adoption or, in the

2、 case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONSleeping bags are used by people in outdoor environments to insulate them from the cold

3、 (that is,reduce their body heat loss to the environment). Sleeping bags often are used with ground pads andclothing inside tents that provide additional protection from the environment. The amount ofinsulation needed in a sleeping bag depends upon the air temperature and a number of otherenvironmen

4、tal factors (for example, wind speed, radiant temperature, moisture in the air), humanfactors (for example, a persons metabolic heat production that is affected by gender, age, fitness level,body type, size, position, and movement), and physical factors (for example, amount of body coverageand the q

5、uality of the insulating materials). The insulation value, expressed in clo units, can be usedto characterize sleeping bags and sleeping bag systems. Insulation values can be used in body heat lossmodels to predict the temperature ratings for comfort.1. Scope1.1 This test method covers determination

6、 of the insulationvalue of a sleeping bag or sleeping bag system. It measures theresistance to dry heat transfer from a constant skin temperaturemanikin to a relatively cold environment. This is a static testthat generates reproducible results, but the manikin cannotsimulate real life sleeping condi

7、tions relating to some humanand environmental factors, examples of which are listed in theintroduction.1.2 The insulation values obtained apply only to the sleep-ing bag or sleeping bag system, as tested, and for the specifiedthermal and environmental conditions of each test, particularlywith respec

8、t to air movement past the manikin.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limit

9、ations prior to use.2. Referenced Documents2.1 ASTM Standards:2F1291 Test Method for Measuring the Thermal Insulation ofClothing Using a Heated Manikin2.2 ISO Standards:3ISO 13537 2002 Requirements for Sleeping BagsISO 15831 2004 ClothingPhysiological EffectsMeasurement of Thermal Insulation by Mean

10、s of a Ther-mal Manikin3. Terminology3.1 Definitions:3.1.1 auxiliary products, nitems used with a sleeping bagto create a sleeping bag system such as clothing, ground pad,and bivy sack.3.1.2 clo, nunit of thermal resistance (insulation) equal to0.155Cm2/W.3.1.2.1 DiscussionAheavy mens business suit

11、provides 1clo of insulation.1This test method is under the jurisdiction of ASTM Committee F08 on SportsEquipment, Playing Surfaces, and Facilities and is the direct responsibility ofSubcommittee F08.22 on Camping Softgoods.Current edition approved Nov. 1, 2014. Published November 2014. Originallyapp

12、roved in 1996. Last previous edition approved in 2011 as F1720 06 (2011).DOI: 10.1520/F1720-14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Documen

13、t Summary page onthe ASTM website.3Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.1.3 dry heat loss, nheat transferred from t

14、he bodysurface to a cooler environment by means of conduction,convection, and radiation.3.1.4 manikin, na life-size model of the human body witha surface temperature similar to that of a human being.3.1.5 sleeping bag, na structure made of down, syntheticfiberfill, shell fabrics, or other materials,

15、 or a combinationthereof, that is designed for people to use for thermal protec-tion when sleeping (for example, outdoors, tent, cabin).3.1.6 sleeping bag system, nsleeping bag used with aux-iliary products such as clothing, ground pad, and bivy sack.3.1.7 thermal insulation, nresistance to dry heat

16、 transferby way of conduction, convection, and radiation.3.1.8 total insulation (IT), nthe resistance to dry heat lossfrom the manikin that includes the resistance provided by thesleeping bag, auxiliary products (if used) and the air layeraround the manikin.3.1.8.1 DiscussionTotal insulation values

17、(IT) are mea-sured directly with a manikin. They can be used to comparedifferent sleeping bags, as long as each test is conducted usingthe same experimental procedures and test conditions.4. Summary of Test Method4.1 A heated manikin is placed inside a sleeping bag orsleeping bag system in a cold en

18、vironmental chamber.4.2 The power needed to maintain a constant body tempera-ture is measured.4.3 The total thermal insulation of the sleeping bag orsleeping bag system (including the resistance of the external airlayer) is calculated based on the skin temperature and surfacearea of the manikin, the

19、 air temperature, and the power level.5. Significance and Use5.1 This test method can be used to quantify and comparethe insulation provided by sleeping bags or sleeping bagsystems. It can be used for material and design evaluations.5.2 The measurement of the insulation provided by clothing(see Test

20、 Method F1291) and sleeping bags is complex anddependent on the apparatus and techniques used. It is notpractical in a test method of this scope to establish detailssufficient to cover all contingencies. Departures from theinstructions in this test method may lead to significantlydifferent test resu

21、lts. Technical knowledge concerning thetheory of heat transfer, temperature and air motionmeasurement, and testing practices is needed to evaluate whichdepartures from the instructions given in this test method aresignificant. Standardization of the method reduces, but does noteliminate, the need fo

22、r such technical knowledge. Any depar-tures should be reported with the results.6. Apparatus6.1 Manikin4Use a supine manikin that is formed in theshape and size of an adult male or female and is capable ofbeing heated to a constant average surface temperature of35C. The manikins height should be bet

23、ween 1.5 and 1.9 mwith a surface area between 1.5 and 2.1 m2.6.1.1 Size and ShapeConstruct the manikin to simulatethe body of a human being, that is, construct a head, chest/back, abdomen/buttocks, arms, hands, legs, and feet. Totalsurface area shall be 1.8 6 0.3 m2, and height shall be 180 610 cm.

24、Any departures from this description should be re-ported.6.1.2 Surface TemperatureConstruct the manikin so as tomaintain a constant temperature distribution over the entirenude body surface with no local hot or cold spots. Ensure thatthe mean skin temperature of the manikin is 35C. Do notallow local

25、 deviations from the mean skin temperature toexceed 60.3C. Evaluate temperature uniformity of the nudemanikin at least once annually using an infrared thermalimaging system, a surface (contact) temperature probe, orequivalent method. This procedure also should be repeatedafter repairs or alterations

26、 are completed that could affecttemperature uniformity, for example, replacing a heating ele-ment.6.2 Power-Measuring InstrumentsMeasure the power tothe manikin so as to give an accurate average over the periodof a test. If time proportioning or phase proportioning is usedfor power control, then dev

27、ices that are capable of averagingover the control cycle are required. Integrating devices (watt-hour metres) are preferred over instantaneous devices (wattmetres). Overall accuracy of the power monitoring equipmentmust be within 62 % of the reading for the average power forthe test period. Since th

28、ere are a variety of devices andtechniques used for power measurement, this standard does notprovide specific calibration procedures. Develop and documentan appropriate power calibration procedure.6.3 Equipment for Measuring the Manikins SkinTemperatureThe mean skin temperature may be measuredwith p

29、oint sensors or distributed temperature sensors.6.3.1 Point SensorsPoint sensors may be thermocouples,resistance temperature devices (RTDs), thermistors, or equiva-lent sensors. Ensure that they are no more than 3-mm thick andare well bonded, both mechanically and thermally, to themanikins surface.

30、Bond lead wires to the surface or passthrough the interior of the manikin, or both. Distribute thesensors so that each one represents the same surface area orarea-weight each sensor temperature when calculating themean skin temperature for the body. A minimum of 11 pointsensors are required. It is r

31、ecommended that a sensor be placedon the head, chest, back, arms, legs, hands, and feet.6.3.2 Distributed SensorsIf distributed sensors are used(for example, resistance wire), then the sensors must bedistributed over the surface so that all areas are equallyweighted. If several such sensors are used

32、 to measure thetemperature of different parts of the body, then their respectivetemperatures should be area-weighted when calculating themean skin temperature. Distributed sensors must be small indiameter (that is, less than 1 mm) and firmly bonded to themanikin surface at all points.4Information on

33、 laboratories with heated manikins can be obtained from theInstitute for Environmental Research, Kansas State University, Manhattan, KS66506.F1720 1426.4 Controlled Environmental ChamberPlace the manikinin a chamber at least 3 by 2 by 2.6 m in dimension that canprovide uniform conditions, both spati

34、ally and temporally.6.4.1 Spatial VariationsDo not exceed the following: airtemperature 61.0C, relative humidity 65 %, and air velocity650 % of the mean value. In addition, the mean radianttemperature shall not be more than 1.0C different from themean air temperature. Verify the spatial uniformity a

35、t leastannually or after any significant modifications are made to thechamber. Verify spatial uniformity by recording values for theconditions stated above at 0.6 m (the midline elevation of themanikin on the cot) and 1.1 m above the floor at the locationoccupied by the manikin. Use sensing devices

36、specified belowwhen measuring the environmental conditions.6.4.2 Temporal VariationsDo not exceed the following:air temperature 60.5C, mean radiant temperature 60.5C,relative humidity 65 %, and air velocity 620 % of the meanvalue for data averaged over 5 min (see 6.4.5).6.4.3 Relative Humidity Measu

37、ring EquipmentAny hu-midity sensing device with an accuracy of 65 % relativehumidity and a repeatability of 63 % is acceptable (forexample, wet bulb/dry bulb, dew point hygrometer). Only onelocation needs to be monitored during a test to ensure that thetemporal uniformity requirements are met.6.4.4

38、Air Temperature SensorsShielded air temperaturesensors shall be used. Any sensor with an overall accuracy of60.15C is acceptable (for example, RTD, thermocouple,thermistor). The sensor shall have a time constant not exceed-ing 1 min. The sensor(s) shall be located at the midlineelevation of the mani

39、kin (0.6 m from the floor), at least 0.4 mfrom the manikin. A single sensor may be used, but multiplesensors are preferred. If a single sensor is used, it shall belocated midway between the head and the feet. If multiplesensors are used, they shall be spaced equally from the head tothe feet and thei

40、r readings averaged.6.4.5 Air Velocity IndicatorUse an omnidirectional an-emometer with 60.05 m/s accuracy. Average measurementsfor at least 1 min at each location. If it is demonstrated thatvelocity does not vary temporally by more than 60.05 m/s,then it is not necessary to monitor air velocity dur

41、ing a test.Thevalue of the mean air velocity must be reported, however. If airvelocity is monitored, then measurement location requirementsare the same as for temperature.7. Sampling7.1 It is desirable to test three identical sleeping bags so thatsample variability will be reflected in the test resu

42、lts. Samplevariance generally is larger for sleeping bags as compared withclothing. If only one sample is available, which is often thecase with prototypes, replicate measurements can be made onone sleeping bag.8. Preparation of Sleeping Bags8.1 The sleeping bag should be the appropriate size for th

43、emanikin with respect to its width and length. A bag that fitstightly and causes compression in the head, feet, or hip areasmay have a lower insulation value than one that does not causecompression.8.2 Bags normally should not be laundered or dry cleanedprior to testing because the procedures may af

44、fect the results.8.3 If auxiliary products are used, the correct size should beselected for the manikin.9. Test Procedure9.1 Environmental Test ConditionsThe standard condi-tions for all tests are given as follows.9.1.1 Air TemperatureThe air temperature shall be at least25C lower than the manikins

45、mean temperature during a test.9.1.2 Air VelocityUse a fan to produce an air velocity of0.3 6 0.05 m/s. Position the bag and manikin so that thedirection of the air flow is from the head to the feet.9.1.3 Relative HumidityMaintain the relative humiditybetween 40 and 80 % for all tests.9.2 Mean Skin

46、Temperature of ManikinThe manikinsmean surface temperature shall be 35 6 0.3C for all tests.9.3 OptionsSelect one of the following procedures.9.3.1 Option 1: Sleeping Bag TestPlace the sleeping bagon the nude manikin on a cot in the environmental chamber andmeasure its insulation.9.3.1.1 This approa

47、ch is used when comparing the design,construction, and filling materials of different bags. Smalldifferences in insulation will be easier to detect when the bagis tested alone.9.3.2 Option 2: Sleeping Bag System TestTest the sleepingbag with selected auxiliary products such as clothing and aground p

48、ad. Describe the auxiliary products used in the report.9.3.2.1 The insulation value of sleeping bag systems isusually used when determining the temperature ratings ofsleeping bags. This is because consumers rarely use a sleepingbag by itself. They generally use some auxiliary products withit. Clothi

49、ng and ground pads can greatly increase the insulationof a sleeping bag and lower the temperature rating for comfort.In addition, this is the approach used in EN 13537.9.4 ProceduresBefore testing, fluff the sleeping bag bytumbling it in a dryer without any load for 15 min at atemperature of less than 30C.9.4.1 Position the manikin horizontally on a cot with awooden frame that is 69 by 193 by 43 cm in dimensions andhas a nylon cover (plain weave, 246 g/m2, 24 by 18 yarns/cm).59.4.2 Dress the manikin in the appropriate clothing (i

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1