ImageVerifierCode 换一换
格式:PDF , 页数:26 ,大小:1.62MB ,
资源ID:435913      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-435913.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ANSI INCITS ISO 2382-5-1989 Information processing systems - Vocabulary - Part 05 Representation of data (Adopted by INCITS).pdf)为本站会员(proposalcash356)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ANSI INCITS ISO 2382-5-1989 Information processing systems - Vocabulary - Part 05 Representation of data (Adopted by INCITS).pdf

1、INTERNATIONAL STANDARD NORME INTERNATIONALE IS0 2382-5 Second edition Deuxihme Edition 1989-05-01 Information processing systems - Vocabulary - Part 05: Representation of data SystGmes de traitement de Iinformation - Vocabulaire - Partie 05: Reprksentation des don b) the term or the generally prefer

2、red term in the language. The absence of a generally accepted term for the concept in the language is indicated by a symbol consisting of five points i.); a row of dots may be used to indicate, in a term, a word to be chosen in each particular case; c) the preferred term in a particular country (ide

3、ntified according to the rules of IS0 639); 1.3 Principes dbtablissement et r6gles suivies 1.3.1 DBfinition de Iarticle La section 2 est composee dun certain nombre d/articles. Cha- que article est compose dun ensemble delements essentiels comprenant le numero de reference, le terme ou plusieurs ter

4、- mes synonymes et la definition dune notion couverte par ces termes. Cet ensemble peut 6tre complete par des exemples, des notes, des schemas ou des tableaux destines a faciliter la comprehension de la notion. Parfois, le meme terme peut 6tre defini dans des articles diffe- rents, ou bien deux noti

5、ons ou davantage peuvent Btre couver- tes par un seul article : voir respectivement en 1.3.5 et 1.3.8. Dautres termes tels que vocabulaire, notion, terme, dbfini- tion sont employ b) le terme, ou le terme prefer6 en general dans la langue. Labsence, dans une langue, de terme consacre ou a conseil- l

6、er pour exprimer une notion est indiquee par un symbole consistant en cinq points de suspension t . . .); les points de suspension peuvent 6tre employ c) le terme prefer6 dans un certain pays (identifie selon les regles de IISO 639); d) the abbreviation for the term; d) Iabreviation pouvant 6tre emp

7、loyee a la place du terme; e) permitted synonymous term(s); f) the text of the definition (see 1.3.4); e) le terme ou les termes admis comme synonymes; f) le texte de la definition tvoir 1.3.4): g) one or more examples with the heading “Example(s)“; g) un ou plusieurs exemples pr h) one or more note

8、s specifying particular casas in the field of application of the concepts, with the heading “NOTE(S)“; i) a picture, a diagram, or a table which could be common to several entries, 1,3.3 Classification of entries A two-digit serial number is assigned to each part of this Inter- national Standard, be

9、ginning with 01 for “fundamental terms”. The entries are classified in groups to each of which is assigned a four-digit serial number; the first two digits being those of the part of this International Standard. h) une ou plusieurs notes precisant le domaine dapplication de la notion, preced6es du t

10、itre (NOTE(S); i) une figure, un schema ou un tableau, pouvant 6tre com- muns a plusieurs articles, 1.3.3 Classification des articles Chaque partie de la presente Norme internationale recoit un numero dordre a deux chiffres, en commenpnt pas 01 pour le chapitre cctermes fondamentauxk Les articles so

11、nt repartis en groupes qui recoivent chacun un numero dordre a quatre chiffres, les deux premiers chiffres Btant ceux du numero de pat-tie de la presente Norme internationale. 2 IS0 2392-5 : 1999 (E/F) Each entry is assigned a six-digit index number; the first four digits being those of the part of

12、this International Standard and the group. In order that versions of this International Standard in various languages are related, the numbers assigned to parts, groups and entries are the same for all languages. 1.3.4 Selection of terms and wording of definitions The selection of terms and the word

13、ing of definitions have, as far as possible, followed established usage. When there were contradictions, solutions agreeable to the majority have been sought. 1.3.5 Multiple meanings When, in one of the working languages, a given term has several meanings, each meaning is given a separate entry in o

14、rder to facilitate translation into other languages. 1.3.6 Abbreviations As indicated in 1.3.2, abbreviations in current use are given for some terms. Such abbreviations are not used in the texts of the definitions, examples or notes. 1.3.7 Use of parentheses In some terms, a word or words printed i

15、n bold typeface are placed between parentheses. These words are part of the com- plete term, but they may be omitted when use of the abridged term in a technical context does not introduce ambiguity. In the text of another definition, example, or note in this part of IS0 2332, such a term is used on

16、ly in its complete form. In some entries, the terms are followed by words in paren- theses in normal typeface. These words are not a part of the term but indicate directives for the use of the term, its particular field of application, or its grammatical form. 1.3.8 Use of brackets When several clos

17、ely related terms can be defined by texts that differ only in a few words, the terms and their definitions are grouped in a single entry. The words to be substituted in order to obtain the different meanings are placed in brackets, i.e. I, in the same order in the term and in the definition. In orde

18、r to avoid uncertainty regarding the words to be sub- stituted, the last word that according to the above rule could be placed in front of the opening bracket is, wherever possible, placed inside the bracket and repeated for each alternative. Chaque article est rep :I in the decimal numeration syste

19、m; by a Roman numeral; 1100 in the binary numeration system. Douze par un mot francais; 12 en numtkation decimate; XII en chiffres romains; 1100 en num taking one minute as the unit, the weights of the three digit places are 60, 10 and 1 respectively; the radices of the second and third digit places

20、 are 6 and 10 respectively. 05.03.10 numeration mixte Numkration 5) base dans laquelle tous les rangs de chiffre nont pas necessairement la mGme base de numkretion. Exemple: Syst si Ion prend la minute comme unite, les poids des trois rangs sont respectivement 60, 10 et 1; les bases de numeration de

21、s deuxieme et troisieme chiffres sont respectivement 6 et IO. NOTES NOTES 1 A comparable numeration system that used one or more digits to represent days and two digits to represent hours would not satisfy the definition of any radix numeration system, since the ratio of the weights of the “day” and

22、 the “tens of hours” digit places would not be an integer. 2 See also note 1 to 05.03.19. 1 Un systeme de numeration analogue employant un chiffre au moins pour rep see also note 2 to 05.03.19. 1 Les poids attaches aux rangs successifs sont des puissances entie- res dune base de numeration unique, m

23、ultipliees par un meme facteur; des puissances entieres negatives de la base de numeration sont employees pour rep voir Bgalement la note 2 sous 05.03.19. 05.03.12 decimal (numeration) system The fixed radix numeration system that uses the digits 0, 1, 2, 3, 4, 5, 6,7, 8 and 9 and the radix ten and

24、in which the lowest integral weight is 1. 05.03.12 numeration dkimale Numbration B base fixe employant les chiffres 0, 1,2,3,4,5,6, 7, 8 et 9, qui a pour base de numdration dix et dans laquelle le poids entier le plus petit est 1. Example: In this numeration system, the numeral 576,2 represents the

25、number Exemple: Dans ce syst that is 1 x 22 + 1 x 2 + 1 x 2-2. Exemple: Dans le systeme de numeration binaire, le numeral 110,Ol represente le nombre 6,25n, cest-a-dire 1 x 22 + 1 x 2 -I- 1 x 2-2. 05.03.16 decimal point The radix point in the decimaI numeration system. 0503.16 signe decimal Caracter

26、e marquant la separation fractionnaire en numeration decimale. NOTE - The decimal point may be represented, according to various conventions, by a comma, by a period, or by a point at the mid-height of the digits. NOTE - Le signe dkcimal peut 6tre reprkent6, suivant les usages, par une virgule ou un

27、 point, ou par un point place B mi-hauteur des chiffres. 0563.17 fixed-point representation system A radix numeration system in which the radix point is implicitly fixed in the series of digit places by some convention upon which agreement has been reached. 05.03.17 numeration a separation fixe repr

28、esentation B virgule fixe Numeration ri base dans laquelle la separation fractionnaire est implicite, sa position thus if the smallest base is b and if x and y represent integers, the numera/654 in such a numeration system represents the number given by 6xyb c 5xb -I- 4b. 2 A fixedradix numeration s

29、ystem is a particular case of a mixed base numeration system in which, when the terms are ordered so that their bases are in descending magnitudes, there is the same integral ratio between the bases of all pairs of adjacent terms; thus if b is the smallest base and if x represents an integer, the nu

30、meral 664 in such a numera- tion system represents the number given by Sx*b + 5xb c 4b. 05.04 Floating-point representation system 09.04.01 floating-point (representation) system A numeration system in which a realnumber is represented by a pair of distinct numerals, the real number being the produc

31、t of the mantissa, one of the numerals, and a value obtained by raising the implicit floating-point base to a power denoted by the exponent indicated by the second numeral. NOTE - In a floating-point representation system there are many representations of the same number obtained by moving the radix

32、 point and adjusting the exponent accordingly. 0504.02 floating-point representation A representation of a real number in a floating-point represen- tation system, Example: A floating-point representation of the number 0,000 123 4 is 0,123 4 -3 where 0,123 4 is the mantissa; -3 is the exponent. The

33、numerals are expressed in the variable-point decimal numeration system; the implicit base is 10. 0503.19 numeration A bases multiples Syst la base dun terme donne est constante pour une application donnke, mais il ny a pas nkessairement de rapports entiers entre les bases de tous les termes. Exemple

34、: Avec les bases bs, b2 et bt, et les mantisses 6,5 et 4, le nombre represent6 est donnb par 6b, -!- 5b, + 4 b,. NOTES 1 La numkration mixte est un cas particulier de numeration 8 bases multiples, dans lequel, lorsque les termes sont rang ainsi, si la plus petite base est b et si x et y sont des ent

35、iers, le numhral654 Bcrit dans un tel systbme de numera- tion represente le nombre don ainsi, si la plus petite base est b et si x est un entier, le numeral 654 Bcrit dans un tel systeme de numeration represente le nombre donne par 6x2b + 5xb + 4b. 05.04 Numeration ZI separation flottante 05.0401 nu

36、meration A separation flottante numeration A virgule flottante Syst -3 est Iexposant, Les numhraux sont exprim la base implicite est IO. 10 IS0 2382-5 : 1989 (E/F) 05.04.03 mantissa (in a floating-point representation) In a floating-point representation, the numeral that is multiplied by the exponen

37、tiated implicit floating-point base to determine the real number represented. Example: See the example of entry 05.04.02. 05.04.04 exponent (in a floating-point representation) In a floating-point representation, the numeral that denotes the power to which the implicit floating-point base is raised

38、before being multiplied by the mantissa to determine the real number represented. Example: See the example of entry 05.04.02. 05.04.05 characteristic (in a floating-point representation) The numeral that represents the exponent in a floating-point representation. NOTE - The characteristic often diff

39、ers from the exponent in a floating-point representation by a constant. In this case, it is known as a biased exponent. For example, if this constant were 64, the floating- point representation shown in the example of entry 05.04.02 would be 0,123 4 61. 05.04.06 floating-point base floating-point ra

40、dix In a floating-point representation system, the implicit fixed positive integer base, greater than unity, that is raised to the power explicitly denoted by the exponent or represented by the characteristic and then multiplied by the mantissa to determine the real number represented. Example: In t

41、he example of entry 05.04.02 the implicit floating- point base is 10. 05.04.07 normalized form (in a floating-point representation) standard form (in a floating-point representation) The form taken by a floating-point representation when the mantissa lies within some prescribed standard range, so ch

42、osen that any given real number is represented by a unique pair of numerals. NOTE - The number zero must have a prescribed characteristic, often 0. 05.04.09 to normalize To make an adjustment to the mantissa and the corresponding adjustment to the characteristic in a floating-point representa- tion

43、to bring the mantissa within some prescribed range, the real number represented remaining unchanged. NOTE - This entry replaces entry 02.09.01 of IS0 2362-02 : 1976. 05.04.03 mantisse (en numeration a separation flottantej Numeral qui est le facteur multiplicatif de la puissance dans la representati

44、on dun nombre reel par un couple de numeraux en numeration a separation flottante. Exemple: Voir Iexemple de Iarticle 05.04.02. 05.04.04 exposant (en numeration B separation flottante) Numeral qui indique la puissance a laquelle doit 6tre Blevee la base despuissances implicite dans la representation

45、 dun nom- bre reel par un couple de numeraux en numeration a separation flottante. Exemple: Voir Iexemple de Iarticle 05.04.02. 05.04.05 caractfkistique (en numeration a separation flottante) Numeral qui represente Iexposant en numeration a separation flottante. NOTE - La caracteristique differe sou

46、vent de Iexposant par Iaddition dune constante donnee; par exemple, avec une constante Bgale 8 64, la representation b virgule flottante de Iexemple de Iarticle 0594.02 serait 0,123 4 61. 05.04.05 base de skparation flottante En numeration a separation flottante, Ientier positif fixe, supe- rieur B

47、Iunite, constituant la base des puissances implicite qui est elevee a la puissance designee explicitement par lexposant ou representee par la caracteristique, puis qui est multipliee par la mantisse pour determiner le nombre reel represent a being 0 or 1, b being 0, 1,2,3 or 4 and 5 a + b being equa

48、l to that number. 0506.03 code deux parmi cinq code quinaire Numkration d parmi les cinq bits de ce num le pre- mier de ces chiffres est z&o ou un avec un poids de cinq, et le deuxi&me est 0, 1, 2, 3 ou 4 avec un poids de un. NOTE - Generally, each of the two numerals is represented in binary. NOTE

49、- GBnBralement, chacun de ces deux chiffres est repr6sent6 en binaire. 05.08.05 packed decimal notation A binarycoded decimal notation in which two consecutive decimal digits, each having four bits, are represented by one byte. 05.05.06 unpacked decimal notation A binary-coded decimal notation in which each decimal digit is represented by one byte. 05.07 Complements 0!5.07.01 complement A number that can be derived from a given number by sub- tracting it from a specified number. Example: In a fixed radix numeration system, the specified number may be

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1