ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:200.39KB ,
资源ID:522041      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-522041.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D6278-2012e1 1250 Standard Test Method for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus《用欧洲柴油喷射器装置对含液体聚合物剪切稳定性的标准试验方法》.pdf)为本站会员(hopesteam270)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D6278-2012e1 1250 Standard Test Method for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus《用欧洲柴油喷射器装置对含液体聚合物剪切稳定性的标准试验方法》.pdf

1、Designation: D6278 121Standard Test Method forShear Stability of Polymer Containing Fluids Using aEuropean Diesel Injector Apparatus1This standard is issued under the fixed designation D6278; the number immediately following the designation indicates the year oforiginal adoption or, in the case of r

2、evision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEditorial changes made to 3.2.1 and Section 10 in April 2013.1. Scope*1.1 This test method covers the ev

3、aluation of the shearstability of polymer-containing fluids. The test method mea-sures the percent viscosity loss at 100C of polymer-containingfluids when evaluated by a diesel injector apparatus procedurethat uses European diesel injector test equipment. The viscosityloss reflects polymer degradati

4、on due to shear at the nozzle.NOTE 1Test Method D2603 has been used for similar evaluation ofshear stability; limitations are as indicated in the significance statement.No detailed attempt has been undertaken to correlate the results of this testmethod with those of the sonic shear test method.NOTE

5、2This test method uses test apparatus as defined in CECL-14-A-93. This test method differs from CEC-L-14-A-93 in the period oftime required for calibration.NOTE 3Test Method D5275 also shears oils in a diesel injectorapparatus but may give different results.NOTE 4This test method has different calib

6、ration and operationalrequirements than withdrawn Test Method D3945.NOTE 5Test Method D7109 is a similar procedure that measures shearstability at both 30 and 90 injection cycles. This test method uses 30injection cycles only.1.2 This standard does not purport to address all of thesafety concerns, i

7、f any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific precau-tionary statements are given in Section 8.2. Referenced Documents2.1 AST

8、M Standards:2D445 Test Method for Kinematic Viscosity of Transparentand Opaque Liquids (and Calculation of Dynamic Viscos-ity)D2603 Test Method for Sonic Shear Stability of Polymer-Containing OilsD5275 Test Method for Fuel Injector Shear Stability Test(FISST) for Polymer Containing FluidsD6299 Pract

9、ice for Applying Statistical Quality Assuranceand Control Charting Techniques to Evaluate AnalyticalMeasurement System PerformanceD7109 Test Method for Shear Stability of Polymer Contain-ing Fluids Using a European Diesel Injector Apparatus at30 and 90 Cycles2.2 Coordination European Council (CEC) S

10、tandard:3CEC L-14-A-93 Evaluation of the Mechanical Shear Sta-bility of Lubricating Oils Containing Polymers3. Terminology3.1 Definitions:3.1.1 kinematic viscosity, na measure of the resistance toflow of a fluid under gravity.3.2 Definitions of Terms Specific to This Standard:3.2.1 calibration press

11、ure, nthe recorded gauge pressurewhen calibration fluid RL233 undergoes a viscosity loss of 2.7to 2.9 mm2/s when the recorded gauge pressure is within therange of 13.0 to 18.0 MPa.3.2.2 percent viscosity loss, nviscosity loss, as defined in3.2.3, divided by the pre-sheared viscosity, and reported as

12、 apercent.3.2.3 viscosity loss, nthe loss in viscosity determined fromthe difference in kinematic viscosity at 100C of pre-shearedand post-sheared fluid.4. Summary of Test Method4.1 A polymer-containing fluid is passed through a dieselinjector nozzle at a shear rate that causes polymer molecules tod

13、egrade. The resultant degradation reduces the kinematicviscosity of the fluid under test. The percent viscosity loss is ameasure of the mechanical shear stability of the polymer-containing fluid.1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and

14、 is the direct responsibility of SubcommitteeD02.07 on Flow Properties.Current edition approved Nov. 1, 2012. Published February 2013. Originallyapproved in 1998. Last previous edition approved in 2007 as D627807. DOI:10.1520/D6278-12.2For referenced ASTM standards, visit the ASTM website, www.astm.

15、org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from CEC Secretariat, Interlynk Administrative Services, Ltd., LynkHouse, 17 Peckleton Lane, Desford, Leicestershir

16、e, LE9 9JU, United Kingdom.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States15. Significance and Use5.1 This test method evaluates the percent viscosity loss forpolymer-co

17、ntaining fluids resulting from polymer degradationin the high shear nozzle device. Thermal or oxidative effectsare minimized.5.2 This test method is used for quality control purposes bymanufacturers of polymeric lubricant additives and their cus-tomers.5.3 This test method is not intended to predict

18、 viscosity lossin field service in different field equipment under widelyvarying operating conditions, which may cause lubricant vis-cosity to change due to thermal and oxidative changes as wellas by the mechanical shearing of polymer. However, when thefield service conditions, primarily or exclusiv

19、ely, result in thedegradation of polymer by mechanical shearing, there may bea correlation between the results from this test method andresults from the field.6. Apparatus6.1 The apparatus consists of a fluid reservoir, a double-plunger pump with an electric motor drive, an atomizationchamber with a

20、 diesel injector spray nozzle, and a fluid coolingvessel, installed in an area with an ambient temperature of 20to 25C (68 to 77F). Fig. A1.1 shows the schematic represen-tation of equipment.6.1.1 Fluid Reservoir, In Fig. A1.1, (7)4is open on the top,has approximately a 250 mL capacity, has a 45-mm

21、(1.772-in.)inner diameter, and is calibrated in units of volume. It is fittedwith an internal fluid distributor as detailed in Fig. A1.2.A40-mm (1.575-in.) diameter watch glass with serrated edges isan acceptable distributor plate. The distributor reduces thetendency of fluid channeling. Temperature

22、 is measured by athermometer suspended in the center of the fluid reservoir. Thebottom of the thermometer bulb shall be 10 to 15 mm above theentrance to the drain tube opening. Other temperature-measuring equipment positioned at the same location may alsobe used. The outlet is equipped with a three-

23、way stopcock (8).The three-way stopcock is of a cone type with a nonexchange-able solid plug with an 8-mm (0.315-in.) nominal bore size.Transparent, plastic tubing, (10) in Fig.A1.1, is used to connectthe three-way stopcock to the pump inlet.6.1.2 Double-Plunger Injection Pump , In Fig. A1.1 (11) is

24、defined as Bosch PE 2 A 90D 300/3 S2266. This pump isequipped with a stroke counter, (15), venting screw, (14), andflow rate adjusting screw, (12).6.1.3 Injection Pump, driven by a three-phase electricmotor, (13) in Fig. A1.1, rated at a speed of 925 6 25 rpm.6.1.3.1 This motor runs at 925 rpm on th

25、e 50 Hz currentprevalent in Europe; it will run at approximately 1100 rpm on60 Hz current. The 1100 rpm speed is not acceptable in thisprocedure. A suitable means shall be taken to ensure theprescribed 925 6 25 rpm speed to the injection pump. Oneacceptable method is to usea6to5speed reducer.6.1.4 O

26、utlet of Injection Pump, connected to the atomizationchamber using high pressure steel tubing. The atomizationchamber, (2) in Fig.A1.1, is defined in more detail in Fig.A1.3.To minimize foam generation, the spray chamber is designedso that the fluid under test exits from the nozzle into a chamberfil

27、led with the test fluid . A drain tube (17) fitted with atwo-way stopcock is included to minimize contamination fromthe previous test during the system cleaning steps. The dieselinjector nozzle is a Bosch DN 8 S 2-type pintle nozzle injector,number 0434 200 012, installed in a Bosch KD 43 SA 53/15no

28、zzle holder. The nozzle holder includes a filter cartridge.NOTE 6Take great care to avoid damage to the precision parts of thefuel injection equipment (the plunger and barrel in the pump and thenozzle valve assembly). Service work on the equipment should beperformed by a diesel fuel injector pump sp

29、ecialist or with reference to themanufacturers service manual.5NOTE 7An unusual rapid rise in gauge pressure during testing maysignify filter blockage. When this occurs, the filter cartridge shall bereplaced.6.1.5 A pressure sensing device (18), such as a glycerol-filled pressure gauge or electronic

30、, digital display pressureindicator , shall be installed and separated from the line by apressure snubber or needle valve to suitably dampen pressuresurges. The pressure device shall be occasionally pressuretested to ensure accuracy.6.1.6 Fluid Cooling Vessel, (5) in Fig. A1.1), used tomaintain the

31、specified temperature of the test fluid, as indicatedat the outlet of the fluid reservoir. This vessel is a glasscontainer with exterior cooling jacket constructed so that theheat transfer surface of the jacket is spherical. The exteriorjacket diameter, d1, is approximately 50 mm (1.969 in.). Theint

32、erior heat transfer surface, d2, is approximately 25 mm(0.984 in.) in diameter. The overall length, L, is approximately180 mm (7.087 in.). A distributor plate, similar in design to thedistributor plate in the fluid reservoir, is positioned in the upperportion of the fluid cooling vessel to ensure co

33、ntact betweenthe fluid and the cooling surface. The discharge from the fluidcooling vessel is through a three-way stopcock of the samedesign used on the discharge of the fluid reservoir. The exteriorcooling jacket shall be supplied with an adjustable volume ofcold water.7. Materials7.1 Diesel Fuel (

34、No. 2), initially required to adjust the dieselinjector nozzle valve opening pressure.7.2 Calibration Fluid RL233, used to ensure that when theapparatus is adjusted to within a prescribed pressure range, thecorrect viscosity loss is obtained.NOTE 8RL233 meets the requirements of this test method and

35、 isacceptable during a transition period between suppliers. See researchreport for details.68. Hazards8.1 WarningUse a safety shield between the high-pressurecomponents and the operator during use of equipment.4The number in parentheses refers to the legend in Fig. A1.1.5Repair Instructions for Dies

36、el Injection Pumps Size A, B, K and Z, BulletinWJP101/1 B EP, Robert Bosch GmbH, 2800 South 25thAve., Broadview, IL60153.6Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D02-1629.D6278 12128.2 Precaution During operation, the lin

37、e between thepump and nozzle, (16) in Fig. A1.1), is under a pressure of atleast 13.0 MPa (130 bar, or 1,885 psi). Pressures above theupper limit of 18.0 MPa (180 bar or 2611 psi) are possible iffilter plugging occurs. Shut off the pump prior to tightening anyfitting that is not properly sealed.9. S

38、ampling9.1 Approximately 600 mL of fluid is needed per test.9.2 The test fluid shall be at room temperature, uniform inappearance, and free of any visible insoluble material prior toplacing in the test equipment.9.3 Water and insolubles shall be removed before testing, orfilter blocking and nozzle w

39、ear may occur. Filter blocking canbe detected by a sudden change in gauge pressure. Thetransport of insolubles to the shear zone will shorten nozzlelife.10. Calibration and Standardization10.1 Nozzle AdjustmentsIf the nozzle to be used is new orhas not been pre-calibrated, adjust the diesel injector

40、 nozzleholder with the nozzle in place. Adjust the nozzle using dieselfuel and a nozzle tester so that the valve opening pressure is13.0 MPa (1885 psi) under static conditions. If the nozzle hasbeen pre-calibrated with RL233 calibration oil, adjust the valveopening pressure to the calibration pressu

41、re prescribed, whichmust be between 13.0 MPa and 18.0 MPa (2611 psi).10.1.1 Install the nozzle and the nozzle holder in the testapparatus. The pintle/spray nozzle shall be tightly fitted in thechamber to avoid leakage of oil around the external surface ofthe spray nozzle.10.2 Measurement of Residual

42、 Undrained Volume, Vres:10.2.1 The residual undrained oil volume of the system isthe volume of the system between the three-way stopcockbelow the fluid reservoir, (8) in Fig. A1.1, and the injectornozzle orifice, (1). Vresdoes not include the atomizationchamber volume. When the residual undrained vo

43、lume isknown, go to 10.3.10.2.2 To determine residual undrained volume, first re-move as much fluid as possible by briefly running the pump.10.2.3 Remove the high-pressure lines, (16) in Fig. A1.1,and drain. Remove the plug at the end of the pump gallery todrain the remaining oil in the pump. Drain

44、atomizationchamber (2).10.2.4 Reassemble the system and close all drains. Theupper three-way stopcock (6) shall be open to the lowerreservoir (7) and the lower three-way cock (8) shall be open tothe pump suction (10).10.2.5 Add 170 mL of RL233 calibration oil to the lowerreservoir (7) and observe th

45、e level. Start the pump and run forseveral minutes until the oil is transparent and free of sus-pended air.10.2.6 Stop the pump. Drain the fluid in the atomizationchamber into a beaker and then pour the fluid back into thelower reservoir; draining to waste will result in an error in themeasurement o

46、f Vres. Allow the system to drain for 20 min andfree air trapped in the transparent connecting tube between thelower reservoir and pump.10.2.7 Observe the difference in oil level in the lowerreservoir compared to that noted in 10.2.5. Record this differ-ence as the residual volume, Vres.NOTE 9Undrai

47、ned residual volumes of 15 to 30 mL have beenreported by various users of this test. Vresmeasurements in excess of thismay occur when fluid in the atomization chamber is not poured back intothe lower reservoir as in 10.2.6, or if the length of line (10) is excessive.10.2.8 Calculate the run volume,

48、Vrun, which is the subtrac-tive difference between 170 mL and Vres.10.3 Cleaning the Apparatus, Setting the Stroke Counter,and Adjusting the Pump Stroke:10.3.1 Drain residual oil by way of drain line (17) from theatomization chamber into a waste container. Drain fluid in thecooling jacket by means o

49、f stopcock (6) (Fig. A1.1) and thefluid reservoir by means of stopcock (8), into suitable wastecontainers.10.3.2 After fluid has drained, leave the stopcock on thedrain line to the atomization chamber open and the three-waystopcock (6) positioned so that fluid in the cooling jacket drainsto a waste container. Position stopcock (8) so that the drain isclosed but the fluid reservoir is open to pump suction throughline (10). Add a minimum of 50 mL of RL233 to the fluidreservoir.NOTE 10Steps 10.3.2-10.3.7 are representative of the first and secondpurges with 5

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1