ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:126.38KB ,
资源ID:527024      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-527024.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E170-2009 9375 Standard Terminology Relating to Radiation Measurements and Dosimetry.pdf)为本站会员(boatfragile160)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E170-2009 9375 Standard Terminology Relating to Radiation Measurements and Dosimetry.pdf

1、Designation: E 170 09Standard Terminology Relating toRadiation Measurements and Dosimetry1This standard is issued under the fixed designation E 170; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A numbe

2、r in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONThis terminology generally covers terms that apply to radiation measurements and dosimetryassociated with energy deposition and radiation ef

3、fects, or damage, in materials caused by interactionsby high-energy radiation fields. The common radiation fields considered are X-rays, gamma rays,electrons, alpha particles, neutrons, and mixtures of these fields. This treatment is not intended to beexhaustive but reflects special and common terms

4、 used in technology and applications of interest toCommittee E10, as for example, in areas of radiation effects on components of nuclear power reactors,radiation hardness testing of electronics, and radiation processing of materials.This terminology uses recommended definitions and concepts of quant

5、ities, with units, for radiationmeasurements as contained in the International Commission on Radiation Units and Measurements(ICRU) Report 60 on “Fundamental Quantities and Units for Ionizing Radiation,” December 30,1998.2Those terms that are defined essentially according to the terminology of ICRU

6、Report 60 willbe followed by ICRU in parentheses. It should also be noted that the units for quantities used are thelatest adopted according to the International System of Units (SI) which are contained inAppendix X1as taken from a table in ICRU Report 33.2This terminology also uses recommended defi

7、nitions of twoISO documents3, namely “International Vocabulary of Basic and General Terms in Metrology.” (VIM,1993) and “Guide to the Expression of Uncertainty in Measurement” (GUM, 1995). Those terms thatare defined essentially according to the terminology of these documents will be followed by eit

8、herVIM or GUM in parentheses.1. Referenced Documents1.1 ASTM Standards:4E 380 Practice for the Use of the International System ofUnits (SI) (The Modernized Metric System)5E 456 Terminology Relating to Quality and StatisticsE 706 Master Matrix for Light-Water Reactor PressureVessel Surveillance Stand

9、ards, E 706(0)E 722 Practice for Characterizing Neutron Energy FluenceSpectra in Terms of an Equivalent Monoenergetic NeutronFluence for Radiation-Hardness Testing of ElectronicsE 910 Test Method for Application and Analysis of HeliumAccumulation Fluence Monitors for Reactor Vessel Sur-veillance, E7

10、06 (IIIC)1.2 ISO Standards:3GUM Guide to the Expression of Uncertainty in Measure-ment, ISO 1995VIM International Vocabulary of Basic and General Termsin Metrology, ISO 19931.3 ICRU Documents:2ICRU 33 Radiation Quantities and UnitsICRU 60 Fundamental Quantities and Units for IonizingRadiation, Decem

11、ber 30, 19981This terminology is under the jurisdiction ofASTM Committee E10 on NuclearTechnology and Applications and is the direct responsibility of SubcommitteeE10.93 on Editorial.Current edition approved June 15, 2009. Published August 2009. Originallyapproved in 1963. Last previous edition appr

12、oved in 2008 as E 170 08d.2ICRU Report 33 has been superceded by ICRU Report 60 on “FundamentalQuantities and Units for Ionizing Radiation,” December 30, 1998. Both of thesedocuments are available from International Commission on Radiation Units andMeasurements (ICRU), 7910 Woodmont Ave., Suite 800,

13、 Bethesda, MD 20814.3Available from International Organization for Standardization (ISO), 1 Rue deVarembe, Case Postale 56, CH-1211, Geneva 20, Switzerland, http:/www.iso.ch.4For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For

14、Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.5Withdrawn.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.1.4 NIST Document:6NIST Technical Note 1297 Guidelines for Ev

15、aluating andExpressing the Uncertainty of NIST Measurement Re-sults, 19942. Terminologyabsorbed dose (D)Quantity of ionizing radiation energyimparted per unit mass of a specified material. The SI unit ofabsorbed dose is the gray (Gy), where 1 gray is equivalent tothe absorption of 1 joule per kilogr

16、am of the specifiedmaterial (1 Gy = 1 J/kg). The mathematical relationship isthe quotient of d by dm, where d is the mean incrementalenergy imparted by ionizing radiation to matter of incremen-tal mass dm. (ICRU)D 5 d/dm (1)DISCUSSION The discontinued unit for absorbed dose is the rad(1 rad = 100 er

17、g/g = 0.01 Gy). Absorbed dose is sometimes referred tosimply as dose. For a photon source under conditions of chargedparticle equilibrium, the absorbed dose, D, may be expressed asfollows:D 5F E en/r, (2)where:F = particle fluence (particles/m2),E = energy of the ionizing radiation (J), anden/r = ma

18、ss energy absorption coefficient (m2/kg).If bremsstrahlung production within the specified material isnegligible, the mass energy absorption coefficient (en/r)isequal to the mass energy transfer coefficient (tr/r), andabsorbed dose is equal to kerma if, in addition, charged particleequilibrium exist

19、s.absorbed dose rate, Dthe absorbed dose in a material perincremental time interval, that is, the quotient of d D by d t(see ICRU Report 33).D5 dD/dt (3)SI unit: Gys1.DISCUSSIONThe absorbed-dose rate is often specified in terms of theaverage value of D over longer time intervals, for example, in uni

20、ts ofGymin1or Gyh1.accuracythe closeness of agreement between a measure-ment result and an accepted reference value (see Terminol-ogy E 456).activation cross sectionthe cross section for processes inwhich the product nucleus is radioactive (see cross section).activity, Aof an amount of radioactive n

21、uclide in a particularenergy state at a given time, the quotient of dN by dt, wheredN is the expectation value of the number of spontaneousnuclear transitions from that energy state in the time intervaldt (ICRU).A 5 dN/dt (4)Unit: s1The special name for the unit of activity is the becquerel(Bq).1 Bq

22、 5 1s21(5)DISCUSSIONThe former special unit of activity was the curie (Ci).1 Ci 5 3.7 3 1010s21exactly!. (6)The “particular energy state” is the ground state of the nuclide unlessotherwise specified. The activity of an amount of radioactive nuclide in aparticular energy state is equal to the product

23、 of the decay constant for thatstate and the number of nuclei in that state (that is, A=Nl). (See decayconstant.)analysis bandwidthspectral band used in a photometricinstrument, such as a densitometer, for the measurement ofoptical absorbance or reflectance.analysis wavelengthwavelength used in a sp

24、ectrophotomet-ric instrument for the measurement of optical absorbance orreflectance.annihilation radiationgamma radiation produced by theannihilation of a positron and an electron. For particles atrest, two photons are produced, each having an energycorresponding to the rest mass of an electron (51

25、1 keV).backscatter peaka peak in the observed photon spectrum(normally below about 0.25 MeV) resulting from large-angle(110) Compton scattering of gamma rays from materialsnear the detector. This peak will not have the same shape asthe full-energy peaks (being wider and skewed toward lowerenergy).be

26、nchmark neutron fielda well-characterized neutron fieldwhich will provide a fluence of neutrons for validation orcalibration of experimental techniques and methods and forvalidation of cross sections and other nuclear data. Thefollowing classification of benchmark neutron fields forreactor dosimetry

27、 has been made:7controlled neutron fielda neutron field physically well-defined, and with some spectrum definition, employed for arestricted set of validation experiments.reference neutron fielda permanent and reproducible neu-tron field less well characterized than a standard field butaccepted as a

28、 measurement reference by a community ofusers.standard neutron fielda permanent and reproducible neu-tron field with neutron fluence rate and energy spectra, andtheir associated spatial and angular distributions character-ized to state-of-the-art accuracy. Important field quantitiesmust be verified

29、by interlaboratory measurements and cal-culations.bremsstrahlungbroad-spectrum electromagnetic radiationemitted when an energetic charged particle is influenced bya strong electric field, such as the Coulomb field of an atomicnucleus.DISCUSSIONIn radiation processing, bremsstrahlung photons aregener

30、ated by the deceleration or deflection of energetic electrons in atarget material. When an electron passes close to an atomic nucleus, thestrong Coulomb field causes the electron to deviate from its originalmotion. This interaction results in a loss of kinetic energy by theelectron with the emission

31、 of electromagnetic radiation; the photonenergy distribution extends up to the maximum kinetic energy of the6Available from National Institute of Standards and Technology (NIST), 100Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, USA, http:/www.nist.gov7Neutron Cross Sections for Reactor Dosimet

32、ry, International Atomic EnergyAgency, Laboratory Activities, Vienna, 1978, Vol 1, p. 62.E170092incident electron. This bremsstrahlung spectrum depends on the elec-tron energy, the composition and thickness of the target, and the angleof emission with respect to the incident electron.buildup factorf

33、or radiation passing through a medium, theratio of the total value of a specified radiation quantity (suchas absorbed dose) at any point in that medium to thecontribution to that quantity from the incident uncollidedradiation reaching that point.cadmium ratiothe ratio of the neutron reaction rate me

34、a-sured with a given bare neutron detector to the neutronreaction rate measured with an identical neutron detectorenclosed by a particular cadmium cover and exposed in thesame neutron field at the same or an equivalent spatiallocation.DISCUSSIONIn practice, meaningful experimental values can beobtai

35、ned in an isotropic neutron field by using a cadmium filterapproximately 1 mm thick.calibrated instrumentan instrument for which the responsehas been documented upon being directly compared with theresponse of a standard instrument, both having been exposedto the same radiation field under the same

36、conditions; or onefor which the response has been documented upon beingexposed to a standard radiation field under well-definedconditions.calibration source or fieldsee electron standard field,g-ray standard field, and X-ray standard field.calorimeteran instrument capable of making absolute mea-sure

37、ments of energy deposition (or absorbed dose) in amaterial through measurement of its change in temperatureand a knowledge of the characteristics of its materialconstruction.certified reference materiala material that has been char-acterized by a recognized standard or testing laboratory, forsome of

38、 its chemical or physical properties, and that isgenerally used for calibration of a measurement system, orfor development or evaluation of a measurement method.DISCUSSIONCertification of a reference material can be obtained byone of the following three established routes of measurement ofproperties

39、: (1) using a previously validated reference method; (2) usingtwo or more independent, reliable measurement methods; and (3) usingan ad hoc network of cooperating laboratories, technically competent,and thoroughly knowledgeable with the materials being tested. Thecertified reference materials provid

40、ed by the United States NationalInstitute of Standards and Technology are called Standard ReferenceMaterials.charged particle equilibriuma condition that exists in anincremental volume within a material under irradiation if thekinetic energies and number of charged particles (of eachtype) entering t

41、hat volume are equal to those leaving thatvolume.DISCUSSIONWhen electrons are the predominatnt charged particle,the term “electron equilibrium” is often used to describe chargedparticle equilibrium. See also the discussions attached to the definitionsof kerma and absorbed dose in E 170.coincidence s

42、um peaka peak in the observed photon spec-trum produced at an energy corresponding to the sum of theenergies of two or more gamma- or x-rays from a singlenuclear event when the emitted photons interact with thedetector within the resolving time of the detector.Compton edge (Ec)the maximum energy val

43、ue of electronsof the Compton scattering continuum. The energy value ofthe Compton edge isEc5 Eg2Eg1 12Eg0.511(7)which corresponds to 180 scattering of the primary photonof energy Eg(MeV). For a 1 MeV photon, the Compton edgeis about 0.8 MeV.Compton scatteringelastic scattering of a photon by anatom

44、ic electron, under the condition of conservation ofmomentum, that is, the vector sum of the momenta of theoutgoing electron and photon is equal to the momentum ofthe incident photon. The scattered photon energy, E8g,isgiven byE8g5Eg1 1Eg1 2 cosu!0.511(8)where Egis the incident photon energy in MeV a

45、nd u is theangle between the direction of the primary and scatteredphoton. The electron energy, Ee, is equal to Eg E8g.continuumthe smooth distribution of energy deposited in agamma detector arising from partial energy absorption fromCompton scattering or other processes (for example,Bremsstrahlung)

46、. See Compton scattering.cross section, sthe quotient of P by F, where P is theprobability of the interaction for one target entity whensubjected to the particle fluence F (ICRU).s5P/F (9)Unit: m2The special unit of cross section is the barn, b.1b5 10228m2(10)decay constant, lof a radioactive nuclid

47、e in a particularenergy state, the quotient of dP by dt, where dP is theprobability of a given nucleus undergoing a spontaneousnuclear transition from that energy state in the time intervaldt (ICRU).l5dP/d t (11)Unit: s1DISCUSSIONThe quantity (ln 2)/l is commonly called the half-life,T12 , of the ra

48、dioactive nuclide, that is, the time taken for the activityof an amount of radioactive nuclide to become half its initial value.depth-dose distributionvariation of absorbed dose withdepth from the incident surface of a material exposed to agiven radiation.displacement dose (Dd)the quotient of d dby

49、dm, where ddis that part of the mean energy imparted by radiation tomatter which produces atomic displacements (that is, ex-cluding the part that produces ionization and excitation ofelectrons) in a volume element of mass dm.E170093Dd5 d d/dm (12)Unit:Jkg1DISCUSSIONA more common unit is displacements per atom(dpa), (see definition).displacements per atom (dpa)the mean number of timeseach atom of a solid is displaced from its lattice site duringan exposure to displacing radiation, as calculated followingsta

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1