ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:84.81KB ,
资源ID:527988      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-527988.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E1135-1997(2003) Standard Test Method for Comparing the Brightness of Fluorescent Penetrants《荧光穿透性亮度比较的试验方法》.pdf)为本站会员(李朗)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E1135-1997(2003) Standard Test Method for Comparing the Brightness of Fluorescent Penetrants《荧光穿透性亮度比较的试验方法》.pdf

1、Designation: E 1135 97 (Reapproved 2003)Standard Test Method forComparing the Brightness of Fluorescent Penetrants1This standard is issued under the fixed designation E 1135; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year

2、 of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method describes the techniques for comparingthe brightness of the penetrants used in the fluorescent d

3、yepenetrant process. This comparison is performed under con-trolled conditions which eliminate most of the variables presentin actual penetrant examination. Thus, the brightness factor isisolated and is measured independently of the other factorswhich affect the performance of a penetrant system.1.2

4、 The brightness of a penetrant indication is dependent onthe developer with which it is used. This test method however,measures the brightness of a penetrant on a convenient filterpaper substrate which serves as a substitute for the developer.1.3 The brightness measurement obtained is color-correcte

5、dto approximate the color response of the average human eye.Since most examination is done by human eyes, this numberhas more practical value than a measurement in units of energyemitted. Also, the comparisons are expressed as a percentage ofsome chosen standard penetrant because no absolute system

6、ofmeasurement exists at this time.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limita

7、tions prior to use.2. Referenced Documents2.1 ASTM Standards:E 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method2E 1316 Terminology for Nondestructive Examinations33. Terminology3.1 Definitions:3.1.1 Definitions of terms applicable to this test method ma

8、ybe found in Terminology E 1316.4. Summary of Test Method4.1 Simulated indications are prepared by impregnatingfilter paper with a specified quantity of the penetrant under test.The samples and similarly prepared standards are then mea-sured in a fluorometer equipped to excite the penetrant withnear

9、 ultraviolet (black) light and respond to color approxi-mately as does the human eye under the conditions encoun-tered during a normal examination. The fluorometer must beequipped with a special sample holder to accept the samplesemployed.4.2 The sample preparation is not indicative of the totalsyst

10、em performance but is convenient as a lot acceptance test.A known amount of penetrant is diluted with a specifiedamount of a volatile solvent, pieces of filter paper are soaked inthe mixture, the paper is dried under specified conditions atroom temperature, placed in the sample holder, and measuredw

11、ith the fluorometer.5. Significance and Use5.1 The penetrant is one of the major components of thefluorescent penetrant process, and very influential in the degreeof performance attained by a given system or group ofmaterials. The penetrant must enter the discontinuity, beremoved from the part surfa

12、ce but not from the discontinuity,be brought out of the discontinuity by the developer, and finallyviewed and detected by the inspector. If all processing param-eters are optimized for the parts being examined and theexamination materials in use, the intrinsic brightness of thepenetrant becomes the

13、factor which governs the sensitivity ofthe system.5.2 Because the eye responds logarithmically rather thanlinearly to changes of brightness, differences in brightnessmust be fairly large to be significant. Differences of 25 % areobvious, 12 % noticeable, and 6 % detectable by the eye.Experts may som

14、etimes detect 3 % differences, but these arenot usually significant to the average observer.5.3 The significance of the results also depends on thedeviation between readings on the same material sample.Different samples, even when prepared out of the same initialquantity of penetrant will not exactl

15、y reproduce readings.These differences occur because of paper differences andpenetrant migration on the paper samples.1This test method is under the jurisdiction of ASTM Committee E07 onNondestructive Testing and is the direct responsibility of Subcommittee E07.03 onLiquid Penetrant and Magnetic Par

16、ticle Methods.Current edition approved July 10, 2003. Published September 2003. Originallyapproved in 1986. Last previous edition approved in 1997 as E 1135 97.2Annual Book of ASTM Standards, Vol 14.02.3Annual Book of ASTM Standards, Vol 03.03.1Copyright ASTM International, 100 Barr Harbor Drive, PO

17、 Box C700, West Conshohocken, PA 19428-2959, United States.5.4 To determine the confidence limits for the test results, itis necessary to perform certain statistical calculations. Theconfidence limits are determined by the equation:CL 5 X6 ts/=n (1)where:CL = the limits within which we can be confid

18、ent the valuelies,X= the average of all readings,t = “students t” (values of which are given by statisticalmanuals),n = the number of readings used,s = the standard deviation determined by the equation:S 5( X 2 X!2n 2 1(2)where:X = the individual readings.In this use, the 95 % confidence level (the

19、value will lie withinthe limits 95 % of the time) is sufficient. At this level, t for 4samples is 3.182.5.4.1 If the confidence limits of two material samplesoverlap, the materials must be considered equal even thoughthe measured average values are different.6. Apparatus6.1 Filter Paper, Whatman #4,

20、 a fast, open structured paper.6.2 Pipets, 1-mL capacity.6.3 Volumetric Flasks, with stopper, 25-mL.6.4 Paper Drying Holders“Crocodile” type battery clips2 in. long with12 in. opening have been found satisfactory. Setup holders to allow drying inside desiccator.6.5 Methylene Chloride or Acetone, tec

21、hnical grade.6.6 Desiccator, 250-mm diameter or larger.6.7 Silica Gel, for use as desiccant.7. Sample Preparation7.1 Sample PreparationNormally a set of samples of astandard material must be prepared along with any testsamples.7.1.1 Pipet 1.0 mL of chosen penetrant into a 25-mLstoppered volumetric f

22、lask.7.1.2 Fill flask to line with methylene chloride, stopper andmix. (If penetrant is not soluble in methylene chloride, useacetone.)7.1.3 Pour 10 to 20 mL of mixture into a 50-mL beaker.7.1.4 Using forceps, dip 4 papers (cut to size for sampleholder in use), one at a time, into beaker, withdraw b

23、y drawingacross the lip of the beaker to remove excess liquid, and clipinto paper drying holder. Holder shall cover as small an area ofpaper as possible.7.1.5 Hang papers in a vertical position inside desiccatoruntil dry. This will require approximately 5 min at roomtemperature.8. Procedure for Turn

24、er Fluorometer4,5NOTE 1All available apparatus may not be suitable for these appli-cations.8.1 Sample Holder, designed for the fluorometer in use.8.1.1 The sample holder for the Turner Fluorometers (seeFig. 1) is detailed in Fig. 2. It is designed for use in the standarddoor from which the spring cl

25、ip and the interior portion of thetube holder have been removed.4The sole source of supply for the Turner Fluorometer known to the committeeat this time are Turner models 110, 111, 112 made by Sequoia-Turner of MountainView, CA.5If you are aware of alternative suppliers, please provide this informat

26、ion toASTM Headquarters. Your comments will receive careful consideration at a meetingof the responsible technical committee,1which you may attend.FIG. 1 Turner Fluorometer, with Door Open Showing Sample Holder and Filters in PlaceE 1135 97 (2003)28.2 Primary Light FilterThe primary (light source) f

27、ilterfor the Turner fluorometers is a Corning-Kopp CS 7-37 2-in.square5,6glass filter.8.3 Secondary Light FiltersThe secondary (detector) filtersystem consists of a Corning-Kopp 3-77 and Kodak #2A, 86Aand CC4OY.5,7The Turner fluorometer requires 2 in. squarefilters.8.4 Neutral Density Intensity Redu

28、cing FiltersAn assort-ment of photographic type filters is required. These should bethe same size as the secondary filters (8.3) and the filterschosen for any measurement should be mounted with thesecondary filters.8.5 Place the primary filter in the right filter holder and thesecondary filters in t

29、he left filter holder.8.6 Insert neutral density filters in secondary filter positionand set sensitivity control (under primary filter) to “1”.8.7 Turn on instrument and allow 15 min warm up beforeuse.8.8 Place a prepared sample of the brightest material to bemeasured in the sample holder.8.9 Place

30、holder in instrument door, close door, and notereading. Open door and insert proper neutral density filters tobring reading on scale, preferably in the 70 to 90 scale divisionrange.8.10 Open door, remove sample holder, remove sample, andreplace with an untreated filter paper.8.11 Place sample holder

31、 in door, close door, and set readingto zero with “blank” control.8.12 Remove blank paper and insert prepared samples formeasurement. Alternate samples of unknown and standardmaterial to minimize affect of any instrument drift which mightoccur.9. Procedure for Coleman Fluorometer5,89.1 Sample Holder

32、The sample holder for the ColemanFluorometer (see Fig. 3) is detailed in Fig. 4. It is designed forinsertion into the sample port in the top of the instrument.Stops to control its rotation may be installed on the instrumentcase and the sample holder.9.2 Primary Light FilterThe primary (light source)

33、 filterfor the Coleman 12C is the Coleman B-1 or B-1-S filter.6The sole source of supply known to the committee at this time is Kopp GlassInc., P.O. Box 8255, Pittsburgh, PA 15218.7The sole source of supply of the Kodak 2A, 86A, and CC40Y known to thecommittee at this time is Eastman Kodak, Inc., Ro

34、chester, NY 14650.8The sole source of supply of the Coleman Model 12C known to the committeeat this time is Perkin Elmer of Norwalk, CT.Dimensionsin. mmA 4.5 114.3B 2.186 55.52C 1.125 28.575D 0.875 22.225E 0.563 14.30F 0.50 12.70G 0.813 20.65H 1.375 34.925J 1.938 49.225K 0.188 radius (2) 4.775L 2.25

35、 57.15M 2.00 50.80N 1.00 25.40P 1.375 34.925Q 2.50 63.50R 3.813 96.85S 0.438 diameter drill thru 11.125T 0.625 diameter counterbore 0.25 deep 15.8756.35V 0.25 6.35W 0.125 3.175X 0.063 1.60Y 1.125 28.575Z 0.25 6.35AA 0.50 drill thru dye penetrants; fluores-cent penetrantsASTM International takes no p

36、osition respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsib

37、ility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to

38、ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the addre

39、ss shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).FIG. 5 Sample HolderE 1135 97 (2003)5

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1