ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:287.47KB ,
资源ID:539444      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-539444.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM F2778-2009(2015) Standard Test Method for Measurement of Percent Crystallinity of Polyetheretherketone (PEEK) Polymers by Means of Specular Reflectance Fourier Transform Infra.pdf)为本站会员(刘芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM F2778-2009(2015) Standard Test Method for Measurement of Percent Crystallinity of Polyetheretherketone (PEEK) Polymers by Means of Specular Reflectance Fourier Transform Infra.pdf

1、Designation: F2778 09 (Reapproved 2015)Standard Test Method forMeasurement of Percent Crystallinity ofPolyetheretherketone (PEEK) Polymers by Means ofSpecular Reflectance Fourier Transform InfraredSpectroscopy (R-FTIR)1This standard is issued under the fixed designation F2778; the number immediately

2、 following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test m

3、ethod describes the collection of absorptionspectra of polyetheretherketone (PEEK) polymer in filled andunfilled grades, as supplied by a vendor, and the subsequentcalculation of the percent crystallinity. The material is evalu-ated by infrared spectroscopy. The intensity (height) of theabsorbance p

4、eaks is related to the amount of crystalline regionspresent in the material.1.2 This test method can be used for PEEK consolidatedforms, such as injection molded parts, as long as the samplesare optically flat and smooth.1.3 The applicability of the infrared method to industrialand medical grade PEE

5、K materials has been demonstrated byscientific studies.2,3Percentage of crystallinity is related toR-FTIR measurement by calibration through wide-angle x-rayscattering (WAXS) crystallinity measurements.2,3It is antici-pated that this test method, involving the peak heights near1305 cm-1and 1280 cm-1

6、, will be evaluated in an Interlabora-tory Study (ILS) conducted according to Test Method E691.1.4 This test method does not suggest a desired range ofcrystallinity for specific applications.1.5 The values stated in SI units are to be regarded asstandard. No other units of measurement are included i

7、n thisstandard.1.6 This standard may involve hazardous materials,operations, and equipment. This standard does not purport toaddress all of the safety concerns, if any, associated with itsuse. It is the responsibility of the user of this standard toestablish appropriate safety and health practices a

8、nd deter-mine the applicability of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:4E691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 crystallinity index

9、 (CI), nthe ratio of the heightbetween the absorption peaks 1305 cm-1and 1280 cm-1.4. Significance and Use4.1 Mechanical properties of PEEK, such as stiffness oryield strength, are influenced by the level of crystallinity.5Thereported crystallinity index determined by this test method hasbeen correl

10、ated with percent crystallinity in PEEK by wide-angle X-ray scattering (WAXS) experiments.2,34.2 This test method may be useful for both processdevelopment, process control, product development, and re-search.5. Interferences5.1 Samples must be smooth and optically flat over the areaof investigation

11、, typical of injection-molded specimens. Theymust be sufficiently thick (for example, 1 to 2 mm) such thatthere is no detectable back surface reflected radiation.1This test method is under the jurisdiction ofASTM Committee F04 on Medicaland Surgical Materials and Devices and is the direct responsibi

12、lity of SubcommitteeF04.15 on Material Test Methods.Current edition approved May 1, 2015. Published May 2015. Originallyapproved in 2009. Last previous edition approved in 2009 as F2778 09. DOI:10.1520/F277809R15.2Chalmers J. M., Everall, N. J., Hewitson, K., Chesters, M. A., Pearson, M.,Grady,A., K

13、uzicka, B., “FourierTransform Infrared Microscopy: SomeAdvances inTechniques for Characterisation and Structure-Property Elucidations of IndustrialMaterial,” The Analyst, Vol 23, 1998, pp. 579586.3Jaekel, D. J., Medel, F. J., Kurtz, S. M., “Validation of Crystallinity Measure-ments of Medical Grade

14、PEEK Using Specular Reflectance FTIR-microscopy,”Society of Plastics Engineers Annual Technical Conference 2009, Chicago 2009,Manuscript ID ANTEC-0248-2009.4For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of AST

15、MStandards volume information, refer to the standards Document Summary page onthe ASTM website.5Kurtz, S. M., Devine, J. N., “PEEK biomaterials in trauma, orthopedic, andspinal implants,” Biomaterials , Vol 28, No. 32, 2007, pp. 48454869.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C7

16、00, West Conshohocken, PA 19428-2959. United States15.2 Samples must be sized appropriately to be accommo-dated in the FTIR apparatus.6. Apparatus6.1 Infrared Spectrometer:6.1.1 An infrared spectrometer capable of recording a re-flection absorption spectrum over the range of 500 cm-1to1500 cm-1is ne

17、cessary.6.1.1.1 A minimum scan resolution of 4 cm-1shall be used.6.1.1.2 Aminimum aperture of 360 360 m shall be used.6.1.1.3 A minimum of 100 scans shall be collected perspectrum.6.1.2 Software capable of using the Kramers-Kronig trans-form algorithm to derive the absorbance spectra.6.2 Specimen Ho

18、lderEquipment capable of accuratelypositioning the sample under the orifice and allowing thesample to be in focus.6.3 Samples Preparation EquipmentEquipment capableof producing optically flat and optically thick samples.7. Preparation of Apparatus7.1 Prior to testing, the FTIR dewer chamber should b

19、efilled with liquid nitrogen until peak-to-peak signal in trans-mission mode is over 10.8. Calibration and Standardization8.1 Validation and calibration should be conducted weeklyby running a validation check of the infrared spectrometerbased on manufacturers instructions.8.2 A background scan shoul

20、d be conducted at the start oftesting and every 30 min thereafter for the duration of testingwhile using the same scanning settings as the test parametersdictate. The background scan should be taken from a com-pletely reflective surface.9. Procedure9.1 Check settings to ensure you are in reflectance

21、 mode,collecting at 100 scans per spectrum with a resolution of4cm-1, an aperture of 360 360 m, and the spectrometer isset to use a Kramers-Kronig transform algorithm.9.2 Place and secure the sample in the holder so that itappears level and flat.9.3 Through the microscope, focus the view on the surf

22、aceof the sample.9.4 Samples can continue to be tested as long as a newbackground is collected every 30 min.10. Calculation or Interpretation of Results10.1 Crystallinity Index (CI):10.1.1 Open a spectrum data file, and restrict the absorptionband range to 900 cm-1and 1400 cm-1.10.1.2 Perform an aut

23、omatic baseline correct of this spec-trum range.10.1.2.1 Determine a reference baseline for the heightmeasurements from the zero value absorbance points on thespectrum as shown in Fig. 1. The first point for the baseline isthe lowest absorbance value point between the spectra bands,1340 to 1375 cm-1

24、, and the second point is lowest absorbancevalue point between 1000 cm-1and 1080 cm-1.10.1.3 Calculate the heights of the peaks near1305 cm-1(HA) and 1280 cm-1(HB) as shown in Fig. 1.10.1.3.1 HA is the peak height corresponding to carbonyllinkages, while HB is primarily influenced by the diphenylFIG

25、. 1 Representative Spectrum of Unfilled, Medical Grade PEEK and Example of Crystallinity Index CalculationF2778 09 (2015)2ether groups of the PEEK molecular chain. The bands influ-enced by the diphenyl ether groups (HB) are invariant to thelevel of crystallinity, whereas the absorption peak correspo

26、nd-ing to carbonyl linkages (HA) increases with the level ofcrystallinity.610.1.4 CI shall be calculated by dividing the calculatedheight HA (peak height at 1305 cm-1) by the calculated heightHB (peak height at 1280 cm-1)(Fig. 1):CI 5 HA/HB (1)10.2 Percent Crystallinity:10.2.1 Based on published dat

27、a,3the CI is related to thepercent crystallinity.10.2.1.1 Crystallinity Correlation:%Crystallinity 5CI 2 0.7281.5493100 (2)10.2.1.2 Eq 2 was derived from CI measurements in speci-mens with known crystallinity from WAXS (Fig. 2).11. Report11.1 Report the following information:11.1.1 Description of th

28、e raw material, preparation methods,or treatment protocols. This should include any information onfiller material, annealing procedures, or processing (injectionmolding, extruding, etc.).11.1.2 Material used for background collection.11.1.3 Description of instrument and software packageused.11.1.4 T

29、he heights of the peaks near 1305 cm-1and1280cm-1, as well as the subsequent Crystallinity Index calcu-lated by Eq 1.11.1.5 The percent crystallinity calculated by Eq 2.12. Precision and Bias12.1 A round robin study will be conducted on PEEKsamples to determine a precision and bias statement.13. Key

30、words13.1 crystallinity; Fourier transmission infrared spectros-copy (FTIR); polyetheretherketone (PEEK); specularreflectance6Nguyen, H. X., and Ishida, H., “MolecularAnalysis of the Melting Behavior ofPoly(Aryl-Ether-Ether-Ketone),” Polymer, Vol 27, No. 9, 1986, pp. 14001405.F2778 09 (2015)3ASTM In

31、ternational takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entire

32、ly their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand s

33、hould be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on S

34、tandards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 6

35、10-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http:/ 2 FTIR and WAXS Calibration Curves Defining the Relationship Between CI and Percent Crystallinity for Filled and Unfilled Gradesof PEEK (Adapted from Jaekel3)F2778 09 (2015)4

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1