ImageVerifierCode 换一换
格式:PDF , 页数:36 ,大小:1.20MB ,
资源ID:578079      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-578079.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BS EN 62047-1-2016 Semiconductor devices Micro-electromechanical devices Terms and definitions《半导体装置 微型电机装置 术语和定义》.pdf)为本站会员(arrownail386)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BS EN 62047-1-2016 Semiconductor devices Micro-electromechanical devices Terms and definitions《半导体装置 微型电机装置 术语和定义》.pdf

1、BSI Standards PublicationSemiconductor devices Micro-electromechanical devicesPart 1: Terms and definitionsBS EN 62047-1:2016National forewordThis British Standard is the UK implementation of EN 62047-1:2016. It isidentical to IEC 62047-1:2016. It supersedes BS EN 62047-1:2006 which iswithdrawn.The

2、UK participation in its preparation was entrusted to TechnicalCommittee EPL/47, Semiconductors.A list of organizations represented on this committee can be obtained onrequest to its secretary.This publication does not purport to include all the necessary provisions ofa contract. Users are responsibl

3、e for its correct application. The British Standards Institution 2016.Published by BSI Standards Limited 2016ISBN 978 0 580 84971 8ICS 31.080.99Compliance with a British Standard cannot confer immunity fromlegal obligations.This British Standard was published under the authority of theStandards Poli

4、cy and Strategy Committee on 30 April 2016.Amendments/corrigenda issued since publicationDate Text affectedBRITISH STANDARDBS EN 62047-1:2016IEC 62047-1 Edition 2.0 2016-01 INTERNATIONAL STANDARD NORME INTERNATIONALE Semiconductor devices Micro-electromechanical devices Part 1: Terms and definitions

5、 Dispositifs semiconducteurs Dispositifs microlectromcaniques Partie 1: Termes et dfinitions INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 31.080.99 ISBN 978-2-8322-3099-2 Registered trademark of the International Electrotechnical Commission Marque dpose de

6、 la Commission Electrotechnique Internationale Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agr. BS EN 62047-1:2016 2 IEC 62047-1:2016 IEC 2016 CONTENTS FOREWORD . 3 1

7、 Scope 5 2 Terms and definitions 5 2.1 General terms and definitions . 5 2.2 Terms and definitions relating to science and engineering 6 2.3 Terms and definitions relating to materials science . 7 2.4 Terms and definitions relating to functional element 7 2.5 Terms and definitions relating to machin

8、ing technology 12 2.6 Terms and definitions relating to bonding and assembling technology . 19 2.7 Terms and definitions relating to measurement technology . 21 2.8 Terms and definitions relating to application technology . 23 Annex A (informative) Standpoint and criteria in editing this glossary .

9、27 A.1 Guidelines for selecting terms . 27 A.2 Guidelines for writing the definitions . 27 A.3 Guidelines for writing the notes . 27 Annex B (informative) Clause cross-references of IEC 62047-1:2005 and IEC 62047-1:2015 28 Bibliography 32 Table B.1 Clause cross-reference of IEC 62047-1: 2005 and IEC

10、 62047-1:2015 28 BS EN 62047-1:2016IEC 62047-1:2016 IEC 2016 3 INTERNATIONAL ELECTROTECHNICAL COMMISSION _ SEMICONDUCTOR DEVICES MICRO-ELECTROMECHANICAL DEVICES Part 1: Terms and definitions FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardizati

11、on comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes Internation

12、al Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in th

13、is preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two

14、 organizations. 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publications have the

15、 form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterp

16、retation by any end user. 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national o

17、r regional publication shall be clearly indicated in the latter. 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carrie

18、d out by independent certification bodies. 6) All users should ensure that they have the latest edition of this publication. 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Commi

19、ttees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. 8) Attention is drawn to

20、 the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be h

21、eld responsible for identifying any or all such patent rights. International Standard IEC 62047-1 has been prepared by subcommittee 47F: Micro-electromechanical systems, of IEC technical committee 47: Semiconductor devices. This second edition cancels and replaces the first edition published in 2005

22、. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) removal of ten terms; b) revision of twelve terms; c) addition of sixteen new terms. BS EN 62047-1:2016 4 IEC 62047-1:2016 IEC 2016 The text of

23、this standard is based on the following documents: FDIS Report on voting 47F/232/FDIS 47F/238/RVD Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Direc

24、tives, Part 2. A list of all parts in the IEC 62047 series, published under the general title Semiconductor devices Micro-electromechanical devices, can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the stability date indicat

25、ed on the IEC web site under “http:/webstore.iec.ch“ in the data related to the specific publication. At this date, the publication will be reconfirmed, withdrawn, replaced by a revised edition, or amended. BS EN 62047-1:2016IEC 62047-1:2016 IEC 2016 5 SEMICONDUCTOR DEVICES MICRO-ELECTROMECHANICAL D

26、EVICES Part 1: Terms and definitions 1 Scope This part of IEC 62047 defines terms for micro-electromechanical devices including the process of production of such devices. 2 Terms and definitions For the purposes of this document, the following terms and definitions apply. 2.1 General terms and defin

27、itions 2.1.1 micro-electromechanical device microsized device, in which sensors, actuators, transducers, resonators, oscillators, mechanical components and/or electric circuits are integrated Note 1 to entry: Related technologies are extremely diverse from fundamental technologies such as design, ma

28、terial, processing, functional element, system control, energy supply, bonding and assembly, electric circuit, and evaluation to basic science such as micro-science and engineering as well as thermodynamics and tribology in a micro-scale. If the devices constitute a system, it is sometimes called as

29、 MEMS which is an acronym standing for “micro-electromechanical systems“ 2.1.2 MST microsystem technology technology to realize microelectrical, optical and machinery systems and even their components by using micromachining Note 1 to entry: The term MST is mostly used in Europe. Note 2 to entry: Th

30、is note applies to the French language only. 2.1.3 micromachine 2.1.3.1 micromachine, miniaturized device, the components of which are several millimetres or smaller in size Note 1 to entry: Various functional device (such as a sensor that utilizes the micromachine technology) is included. 2.1.3.2 m

31、icromachine, microsystem that consists of an integration of micromachine devices Note 1 to entry: A molecular machine called a nanomachine is included. BS EN 62047-1:2016 6 IEC 62047-1:2016 IEC 2016 2.2 Terms and definitions relating to science and engineering 2.2.1 micro-science and engineering sci

32、ence and engineering for the microscopic world of MEMS Note 1 to entry: When mechanical systems are miniaturized, various physical parameters change. Two cases prevail: 1) these changes can be predicted by extrapolating the changes of the macro-world, and 2) the peculiarity of the microscopic world

33、becomes apparent and extrapolation is not possible. In the latter case, it is necessary to establish new theoretical and empirical equations for the explanation of phenomena in the microscopic world. Moreover, new methods of analysis and synthesis to deal with engineering problems must be developed.

34、 Materials science, fluid dynamics, thermodynamics, tribology, control engineering, and kinematics can be systematized as micro-sciences and engineering supporting micromechatronics. 2.2.2 scale effect change in effect on the objects behaviour or properties caused by the change in the objects dimens

35、ion Note 1 to entry: The volume of an object is proportional to the third power of its dimension, while the surface area is proportional to the second power. As a result, the effect of surface force becomes larger than that of the body force in the microscopic world. For example, the dominant force

36、in the motion of a microscopic object is not the inertial force but the electrostatic force or viscous force. Material properties of microscopic objects are also affected by the internal material structure and surface, and, as a result, characteristic values are sometimes different from those of bul

37、ks. Frictional properties in the microscopic world also differ from those in the macroscopic world. Therefore, those effects must be considered carefully while designing a micromachine. 2.2.3 microtribology tribology for the microscopic world Note 1 to entry: Tribology deals with friction and wear i

38、n the macroscopic world. On the other hand, when the dimensions of components such as those in micromachines become extremely small, surface force and viscous force become dominant instead of gravity and inertial force. According to Coulombs law of friction, frictional force is proportional to the n

39、ormal load. In the micromachine environment, because of the reaction between surface forces, a large frictional force occurs that would be inconceivable in an ordinary scale environment. Also a very small quantity of abrasion that would not be a problem in an ordinary scale environment can fatally d

40、amage a micromachine. Microtribology research seeks to reduce frictional forces and to discover conditions that are free of friction, even on an atomic level. In this research, observation is made of phenomena that occur with friction surfaces or solid surfaces at from angstrom to nanometer resoluti

41、on, and analysis of interaction on an atomic level is performed. These approaches are expected to be applied in solving problems in tribology for the ordinary scale environment as well as for the micromachine environment. 2.2.4 biomimetics creating functions that imitate the motions or the mechanism

42、s of organisms Note 1 to entry: In devising microscopic mechanisms suitable for micromachines, the mechanisms and structures of organisms that have survived severe natural selection may serve as good examples to imitate. One example is the microscopic three-dimensional structures that were modelled

43、on the exoskeletons and elastic coupling systems of insects. In exoskeletons, a hard epidermis is coupled with an elastic body, and all movable parts use the deformation of the elastic body to move. The use of elastic deformation would be advantageous in the microscopic world to avoid friction. Also

44、, the exoskeleton structure equates to a closed link mechanism in kinematics and has the characteristic that some actuator movement can be transmitted to multiple links. 2.2.5 self-organization organization of a system without any external manipulation or control, where a nonequilibrium structure em

45、erges spontaneously due to the collective interactions among a number of simple microscopic objects or phenomena BS EN 62047-1:2016IEC 62047-1:2016 IEC 2016 7 2.2.6 electro wetting on dielectric EWOD wetting of a substrate controlled by the voltage between a droplet and the substrate covered with a

46、dielectric film Note 1 to entry: The contact angle of a liquid droplet, typically an electrolyte, on a substrate can be electrically controlled because the solid-liquid surface interfacial tension can be controlled with the energy stored in the electric double layer which works as capacitor. Coverin

47、g the electrode with a dielectric material of determined thickness, the capacitance can be determined with ease. Electro wetting on dielectric is used typically in microfluidic devices. Note 2 to entry: This note applies to the French language only. 2.2.7 stiction phenomenon that a moving microstruc

48、ture is stuck to another structure or substrate by adhesion forces Note 1 to entry: When structures become smaller, stiction appears significant due to the scale effect that surface forces predominate over body forces. Stiction frequently occurs in the MEMS fabrication process when small structures

49、are released during wet etching processes due to the surface tension of liquid. Representative adhesion forces to cause stiction are van der Waals force, electrostatic force, and surface tension of liquid between structures. 2.3 Terms and definitions relating to materials science 2.3.1 silicon-on-insulator SOI structure composed of an insulator and a thin layer of silicon on it Note 1 to entry: Sapphire (as in SOS), glass (as in SOG), silicon dioxide, silicon nitride, or even an insulating for

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1