ImageVerifierCode 换一换
格式:PDF , 页数:33 ,大小:948.04KB ,
资源ID:656975      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-656975.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(DIN 4150-1-2001 Vibrations in buildings - Part 1 Prediction of vibration parameters《建筑物振动 第1部分 振动参数预测》.pdf)为本站会员(postpastor181)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

DIN 4150-1-2001 Vibrations in buildings - Part 1 Prediction of vibration parameters《建筑物振动 第1部分 振动参数预测》.pdf

1、 No part of this translation may be reproduced without the prior permission ofDIN Deutsches Institut fr Normung e. V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany,has the exclusive right of sale for German Standards (DIN-Normen).Continued on pages 2 to 33.ICS 91.120.25Erschtterungen im Bauwesen

2、 Teil 1: Vorermittlung von Schwin-gungsgrenIn keeping with current practice in standards published by the International Organization for Standardization (ISO), a comma has been used throughout as the decimal marker.4150-1Structural vibrationPart 1: Predicting vibration parametersTranslation by DIN-S

3、prachendienst.In case of doubt, the German-language original should be consulted as the authoritative text.ContentsPageForeword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4、 . . . . . . . . . . . . . . . . . . . . . . . . 22 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.1 Vibration . . . . . . . . . .

5、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2 Free eld (vibration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Prediction principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.

6、1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.2 Propagation of vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.3 Transmission to structures . . . . . . . . . . . . . . . . . . . . . . . . . .

7、 . . . . . . . . . . 65 Vibration sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1 Single events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1.1 General . . . . . . . . . . . . . . . . . . . . . .

8、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1.2 Blasting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1.3 Falling masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2 Construction

9、work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2.2 Impulsive sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10、 . . . . . 85.2.3 Stationary sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2.4 Vibration induced during construction work . . . . . . . . . . . . . . . . . . . . . 95.3 Trafc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11、. . . . . . . . . . . . . 95.3.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95.3.2 Rail trafc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95.3.3 Road trafc. . . . . . . . . . . . . . .

12、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105.4 Machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105.4.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105.4.2 Ma

13、chine rooms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105.4.3 Metal forming machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115.4.4 Saw frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14、 . . . . . .12Annex A Examples of different vibration source types. . . . . . . . . .12DEUTSCHE NORM June 2001Supersedes September 1975 edition.English price group 14 www.din.de www.beuth.de08.05 9643401!,cE$“Page 2DIN 4150-1:2001-06ForewordThis standard has been prepared by Technical Committee 00.0

15、4.00 Schwingungsfragen im Bauwesen; Ermitt-lung der Schwingungsgren of the Normenausschuss Bauwesen (Building and Civil Engineering Standards Committee).The information given in this standard combines the scientic knowledge and practical experience gained since the publication of the previous editio

16、n of this standard in 1975. Taking into account that, at present, it is not possible to specify a generally applicable method of vibration prediction, general procedures are given here to ensure the reliability of such predictions, and in a more practically oriented section various vibra-tion source

17、s and their effects are described. Furthermore, examples of measurements of vibration from such sources using currently used test methods are given in the Annex.The subject dealt with here is extremely varied, in some cases extraordinarily complex, and normally inuenced by local conditions. Not ever

18、yone involved in vibration prediction will be able to draw an accurate picture of expected vibration and make an appropriate and accurate prognosis based on this information. The examples given Annex A should help in this.AmendmentsThis standard differs from the September 1975 edition as follows:a)

19、the standard has been revised in form and content;b) only clause 3 of the previous edition is dealt with here, in greater detail;c) damping is now taken into consideration;d) examples of measurements of vibration generated by different sources are given.Previous editionsDIN 4150: 1939-07; DIN 4150-1

20、: 1975-09.1 ScopeThis standard gives guidelines for predicting vibration, including the prediction of values for specic param-eters. These values can be used to evaluate the effects of vibration on humans (as in DIN 4150-2) or on build-ings (as in DIN 4150-3).NOTE: There are many possible sources of

21、 vibration, and the inuence of vibration propagation, as well as the effect of the vibration on structures can only be approximated. For this reason, a specialist with sufcient knowledge and experience should be involved in making vibration predictions.2 Normative referencesThis standard incorporate

22、s, by dated or undated reference, provisions from other publications. These norma-tive references are cited at the appropriate places in the text, and the titles of the publications are listed be-low. For dated references, subsequent amendments to or revisions of any of these publications apply to t

23、his standard only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.DIN 1311 series Vibration and vibration systemsDIN 4150-2 Structural vibration Human exposure to vibration in buildingsDIN 4150-3 Structural vibration

24、 Effects of vibration on structuresDIN 45669-1 Mechanical vibration and shock measurement Measuring equipmentDIN 45669-2 Mechanical vibration and shock measurement Measurement procedure1 Melke, J. Durchfhrung von Immissionsprognosen fr Schwingungs- und Krperschalleinwirkungen (Pre-dicting the effect

25、s of vibration and structure-borne noise), issued by Landesamt fr Immissionsschutz Nordrhein-Westfalen, LIS-Bericht, 1992: 107.2 Haupt, W. Bodendynamik Grundlagen und Anwendung (Soil dynamics Principles and applications), 1986: Vieweg-Verlag.3 Rcker, W. Schwingungsausbreitung im Untergrund (Vibratio

26、n propagation in soil), Bautechnik, 1989: 66 (10), 343350.4 Empfehlungen des Arbeitskreises 9 Baugrunddynamik“ der Deutschen Gesellschaft fr Erd- und Grund-bau e. V. (Recommendations of Technical Committee Subsoil dynamics of the Deutsche Gesellschaft fr Erd- und Grundbau e. V. (German Society for E

27、arthworks and Foundation Engineering), Bautechnik, 1992: 9.Page 3DIN 4150-1:2001-065 Ldeling, R. and Hinzen, K.-G. Erschtterungsprognose und Erschtterungskataster Forschungsarbei-ten auf dem Gebiet der Sprengerschtterungen (Vibration prediction and list of sites exposed to vibrati-on Research in the

28、 eld of blast-induced vibration), Essen, NOBEL-Hefte, 1986: 52.(2/3), 105123.6 Schomann, A. Erschtterungen durch umstrzende Bauwerke bei Abbruchsprengungen, NOBEL-Hefte, Essen, 1983: 49 (3/4), 7988.7 Melke, J. Erschtterungen und Krperschall des landgebundenen Verkehrs Prognose und Schutzma-nahmen (V

29、ibration induced by land trafc Prediction and safety measures), issued by Landesamt fr Immissionsschutz Nordrhein-Westfalen, Materialien, Essen, 1995: 22.3 ConceptsFor the purposes of this standard, the concepts dened in the DIN 1311 series of standards apply, as well as the following.3.1 VibrationM

30、echanical vibration of solid bodies, which may cause damage or discomfort (from DIN 4150-3).3.2 Free eld (vibration)The regions of the ground surface not inuenced by man-made structures.4 Prediction principles4.1 MethodThis standard describes methods of estimating the effects of vibration from a kno

31、wn source on a planned neighbouring structure, or from a planned neighbouring source on an existing structure. The propagation of vibration and its transmission to a structure can be determined taking values obtained in measurements or on the basis of experience, using the information given here and

32、 equations (1) to (4). The predicted vibration parameters can then be used to evaluate the possible effects of vibration (e.g. acceptabil-ity in terms of human exposure, or the probability of structural damage) in accordance with DIN 4150-2 and DIN 4150-3.The vibration parameters to be determined ar

33、e inuenced by the vibration source, the properties of the soil along the propagation path, the conditions of the structure or site receiving the vibration, as well as the subsoil upon which such a structure is built 1.In clause 5, the different types of vibration source are characterized according t

34、o source geometry (see subclause 4.2 and gure 1), vibration type (see subclause 4.2 and gure 1), how often the vibration occurs, frequency distribution, exposure area, source presence (permanent or temporary), duration of the effects.Sources not covered by clause 5 are to be dealt with by analogy.Ex

35、amples of each source type and its possible effects are given in Annex A, including: source geometry and effects over time, classication (vibration type, frequency range, amplitudes), excitation mechanisms, amplitude-distance curves.4.2 Propagation of vibrationThe energy transmitted to the ground by

36、 a vibration source propagates in the form of two different types of wave: body waves (e.g. compression waves, shear waves) and surface waves (e.g. Rayleigh waves). Depend-ing on the source type and nature of energy transmission to the soil, waves are produced at different levels of excitation.To di

37、stinguish between the free wave propagation region (far eld) and the region near the vibration source in which complex processes take place (near eld), a reference distance from the source centre, R1, is drawn, dening the transition from the near eld to the far eld 2. For all vibration sources which

38、 can be idealized as a point or a line, the reference distance to the far eld is dened byPage 4DIN 4150-1:2001-06R1 = +lR(1)wherea is the source dimension which is parallel to the direction of propagation; lRis the wavelength of the surface wave.Sources near the ground surface produce vibration whic

39、h propagates primarily at the surface (Rayleigh waves).The magnitude of vibration transmitted via the soil decreases with increasing distance from the source, largely as a function of geometrical damping and material damping.In the far eld (where R R1), the decrease in vibration velocity amplitude c

40、an be approximated byn_= n_11nRR expa(R R1) (2)wheren_is the vibration velocity amplitude, in mm/s;n_1is the vibration velocity amplitude at R1, in mm/s;R1is the reference distance, in m;R is the actual distance from the source, in m;n is an exponent;a is the coefcient of attenuation, in m1, with a

41、R 2pD/l,whereD is the damping factor;l is the relevant wavelength, in m.l is given by c/fwherec is the wave propagation velocity, in m/s; f is the frequency, in Hz.The geometrical amplitude attenuation for (R/R1)nis a result of the decrease in energy density with increasing distance from the source.

42、 The exponent n is a function of the following factors (see also gure 1):1) source geometry: point (PQ) or linear (LQ);2) vibration type: harmonic/stationary (HS) or impulsive (I);3) wave type: body wave (R) or surface wave (O).For a linear source of limited extension (e.g. a long foundation slab),

43、the exponent will relate to a linear source in the immediate vicinity of the vibration source, but with increasing distance it will relate more to a point source. A foundation with longitudinal dimensions equalling more than half a wavelength cannot be seen as a point source. Trains can be deemed a

44、chain of point sources (i.e. an extended source with out-of-phase excitation), for which the exponent in the far-eld will be between 0,3 and 0,5, except at xed locations (e.g. switches), where it is an impulsive point source which produces surface waves.Page 5DIN 4150-1:2001-06KeySource geometry:LQ

45、LinearPQ PointVibration type:HS Harmonic/stationaryI ImpulsiveWave type:R Body waveO Surface waveFigure 1: Determining exponent n as a function of vibration amplitude attenuation over distanceIn some cases, exponent values may deviate considerably from the approximate values given in gure 1, for ins

46、tance due to extreme stratication of the soil, the presence of structures, discontinuities in the ground, and interaction between several vibration sources.In such cases, n is to be determined on a case-by-case basis, using gure 1 as a guide. In this gure, the n values were based on the dispersion o

47、f waves in natural soil generated by an impulsive source. 3Groundwater is conducive to the propagation of compression waves, but inuences surface waves only slight-ly.Another factor which causes amplitude attenuation is the absorption of vibration energy by the soil (mate-rial damping), which is fre

48、quency-dependent (as expressed by the term exp a(R R1) in equation (1). The damping factor, D, included in a is dependent on the soil structure, its compactness and the dynamic deforma-tion amplitude. When making preliminary investigations and estimations, D is not to be taken as being greater than

49、0,01 for regolith 2; any higher values are to be veried. The denition of the coefcient of attenuation im-plies that high-frequency vibration is damped to a greater extent than low-frequency vibration (see gure 2).Normalizedvibrationvelocity,n/n1Distance R/R1, in mPage 6DIN 4150-1:2001-06Figure 2: Effect of vibration energy absorption by the soil on amplitude attenuation with increasing distance, as a factor of frequency (for D = 0,01 and

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1