1、 No part of this translation may be reproduced without the prior permission ofDIN Deutsches Institut fr Normung e. V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany,has the exclusive right of sale for German Standards (DIN-Normen).Continued on pages 2 to 33.ICS 91.120.25Erschtterungen im Bauwesen
2、 Teil 1: Vorermittlung von Schwin-gungsgrenIn keeping with current practice in standards published by the International Organization for Standardization (ISO), a comma has been used throughout as the decimal marker.4150-1Structural vibrationPart 1: Predicting vibration parametersTranslation by DIN-S
3、prachendienst.In case of doubt, the German-language original should be consulted as the authoritative text.ContentsPageForeword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4、 . . . . . . . . . . . . . . . . . . . . . . . . 22 Normative references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.1 Vibration . . . . . . . . . .
5、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2 Free eld (vibration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Prediction principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.
6、1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.2 Propagation of vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.3 Transmission to structures . . . . . . . . . . . . . . . . . . . . . . . . . .
7、 . . . . . . . . . . 65 Vibration sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1 Single events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1.1 General . . . . . . . . . . . . . . . . . . . . . .
8、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1.2 Blasting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1.3 Falling masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2 Construction
9、work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2.2 Impulsive sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10、 . . . . . 85.2.3 Stationary sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85.2.4 Vibration induced during construction work . . . . . . . . . . . . . . . . . . . . . 95.3 Trafc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11、. . . . . . . . . . . . . 95.3.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95.3.2 Rail trafc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95.3.3 Road trafc. . . . . . . . . . . . . . .
12、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105.4 Machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105.4.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105.4.2 Ma
13、chine rooms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105.4.3 Metal forming machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115.4.4 Saw frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14、 . . . . . .12Annex A Examples of different vibration source types. . . . . . . . . .12DEUTSCHE NORM June 2001Supersedes September 1975 edition.English price group 14 www.din.de www.beuth.de08.05 9643401!,cE$“Page 2DIN 4150-1:2001-06ForewordThis standard has been prepared by Technical Committee 00.0
15、4.00 Schwingungsfragen im Bauwesen; Ermitt-lung der Schwingungsgren of the Normenausschuss Bauwesen (Building and Civil Engineering Standards Committee).The information given in this standard combines the scientic knowledge and practical experience gained since the publication of the previous editio
16、n of this standard in 1975. Taking into account that, at present, it is not possible to specify a generally applicable method of vibration prediction, general procedures are given here to ensure the reliability of such predictions, and in a more practically oriented section various vibra-tion source
17、s and their effects are described. Furthermore, examples of measurements of vibration from such sources using currently used test methods are given in the Annex.The subject dealt with here is extremely varied, in some cases extraordinarily complex, and normally inuenced by local conditions. Not ever
18、yone involved in vibration prediction will be able to draw an accurate picture of expected vibration and make an appropriate and accurate prognosis based on this information. The examples given Annex A should help in this.AmendmentsThis standard differs from the September 1975 edition as follows:a)
19、the standard has been revised in form and content;b) only clause 3 of the previous edition is dealt with here, in greater detail;c) damping is now taken into consideration;d) examples of measurements of vibration generated by different sources are given.Previous editionsDIN 4150: 1939-07; DIN 4150-1
20、: 1975-09.1 ScopeThis standard gives guidelines for predicting vibration, including the prediction of values for specic param-eters. These values can be used to evaluate the effects of vibration on humans (as in DIN 4150-2) or on build-ings (as in DIN 4150-3).NOTE: There are many possible sources of
21、 vibration, and the inuence of vibration propagation, as well as the effect of the vibration on structures can only be approximated. For this reason, a specialist with sufcient knowledge and experience should be involved in making vibration predictions.2 Normative referencesThis standard incorporate
22、s, by dated or undated reference, provisions from other publications. These norma-tive references are cited at the appropriate places in the text, and the titles of the publications are listed be-low. For dated references, subsequent amendments to or revisions of any of these publications apply to t
23、his standard only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.DIN 1311 series Vibration and vibration systemsDIN 4150-2 Structural vibration Human exposure to vibration in buildingsDIN 4150-3 Structural vibration
24、 Effects of vibration on structuresDIN 45669-1 Mechanical vibration and shock measurement Measuring equipmentDIN 45669-2 Mechanical vibration and shock measurement Measurement procedure1 Melke, J. Durchfhrung von Immissionsprognosen fr Schwingungs- und Krperschalleinwirkungen (Pre-dicting the effect
25、s of vibration and structure-borne noise), issued by Landesamt fr Immissionsschutz Nordrhein-Westfalen, LIS-Bericht, 1992: 107.2 Haupt, W. Bodendynamik Grundlagen und Anwendung (Soil dynamics Principles and applications), 1986: Vieweg-Verlag.3 Rcker, W. Schwingungsausbreitung im Untergrund (Vibratio
26、n propagation in soil), Bautechnik, 1989: 66 (10), 343350.4 Empfehlungen des Arbeitskreises 9 Baugrunddynamik“ der Deutschen Gesellschaft fr Erd- und Grund-bau e. V. (Recommendations of Technical Committee Subsoil dynamics of the Deutsche Gesellschaft fr Erd- und Grundbau e. V. (German Society for E
27、arthworks and Foundation Engineering), Bautechnik, 1992: 9.Page 3DIN 4150-1:2001-065 Ldeling, R. and Hinzen, K.-G. Erschtterungsprognose und Erschtterungskataster Forschungsarbei-ten auf dem Gebiet der Sprengerschtterungen (Vibration prediction and list of sites exposed to vibrati-on Research in the
28、 eld of blast-induced vibration), Essen, NOBEL-Hefte, 1986: 52.(2/3), 105123.6 Schomann, A. Erschtterungen durch umstrzende Bauwerke bei Abbruchsprengungen, NOBEL-Hefte, Essen, 1983: 49 (3/4), 7988.7 Melke, J. Erschtterungen und Krperschall des landgebundenen Verkehrs Prognose und Schutzma-nahmen (V
29、ibration induced by land trafc Prediction and safety measures), issued by Landesamt fr Immissionsschutz Nordrhein-Westfalen, Materialien, Essen, 1995: 22.3 ConceptsFor the purposes of this standard, the concepts dened in the DIN 1311 series of standards apply, as well as the following.3.1 VibrationM
30、echanical vibration of solid bodies, which may cause damage or discomfort (from DIN 4150-3).3.2 Free eld (vibration)The regions of the ground surface not inuenced by man-made structures.4 Prediction principles4.1 MethodThis standard describes methods of estimating the effects of vibration from a kno
31、wn source on a planned neighbouring structure, or from a planned neighbouring source on an existing structure. The propagation of vibration and its transmission to a structure can be determined taking values obtained in measurements or on the basis of experience, using the information given here and
32、 equations (1) to (4). The predicted vibration parameters can then be used to evaluate the possible effects of vibration (e.g. acceptabil-ity in terms of human exposure, or the probability of structural damage) in accordance with DIN 4150-2 and DIN 4150-3.The vibration parameters to be determined ar
33、e inuenced by the vibration source, the properties of the soil along the propagation path, the conditions of the structure or site receiving the vibration, as well as the subsoil upon which such a structure is built 1.In clause 5, the different types of vibration source are characterized according t
34、o source geometry (see subclause 4.2 and gure 1), vibration type (see subclause 4.2 and gure 1), how often the vibration occurs, frequency distribution, exposure area, source presence (permanent or temporary), duration of the effects.Sources not covered by clause 5 are to be dealt with by analogy.Ex
35、amples of each source type and its possible effects are given in Annex A, including: source geometry and effects over time, classication (vibration type, frequency range, amplitudes), excitation mechanisms, amplitude-distance curves.4.2 Propagation of vibrationThe energy transmitted to the ground by
36、 a vibration source propagates in the form of two different types of wave: body waves (e.g. compression waves, shear waves) and surface waves (e.g. Rayleigh waves). Depend-ing on the source type and nature of energy transmission to the soil, waves are produced at different levels of excitation.To di
37、stinguish between the free wave propagation region (far eld) and the region near the vibration source in which complex processes take place (near eld), a reference distance from the source centre, R1, is drawn, dening the transition from the near eld to the far eld 2. For all vibration sources which
38、 can be idealized as a point or a line, the reference distance to the far eld is dened byPage 4DIN 4150-1:2001-06R1 = +lR(1)wherea is the source dimension which is parallel to the direction of propagation; lRis the wavelength of the surface wave.Sources near the ground surface produce vibration whic
39、h propagates primarily at the surface (Rayleigh waves).The magnitude of vibration transmitted via the soil decreases with increasing distance from the source, largely as a function of geometrical damping and material damping.In the far eld (where R R1), the decrease in vibration velocity amplitude c
40、an be approximated byn_= n_11nRR expa(R R1) (2)wheren_is the vibration velocity amplitude, in mm/s;n_1is the vibration velocity amplitude at R1, in mm/s;R1is the reference distance, in m;R is the actual distance from the source, in m;n is an exponent;a is the coefcient of attenuation, in m1, with a
41、R 2pD/l,whereD is the damping factor;l is the relevant wavelength, in m.l is given by c/fwherec is the wave propagation velocity, in m/s; f is the frequency, in Hz.The geometrical amplitude attenuation for (R/R1)nis a result of the decrease in energy density with increasing distance from the source.
42、 The exponent n is a function of the following factors (see also gure 1):1) source geometry: point (PQ) or linear (LQ);2) vibration type: harmonic/stationary (HS) or impulsive (I);3) wave type: body wave (R) or surface wave (O).For a linear source of limited extension (e.g. a long foundation slab),
43、the exponent will relate to a linear source in the immediate vicinity of the vibration source, but with increasing distance it will relate more to a point source. A foundation with longitudinal dimensions equalling more than half a wavelength cannot be seen as a point source. Trains can be deemed a
44、chain of point sources (i.e. an extended source with out-of-phase excitation), for which the exponent in the far-eld will be between 0,3 and 0,5, except at xed locations (e.g. switches), where it is an impulsive point source which produces surface waves.Page 5DIN 4150-1:2001-06KeySource geometry:LQ
45、LinearPQ PointVibration type:HS Harmonic/stationaryI ImpulsiveWave type:R Body waveO Surface waveFigure 1: Determining exponent n as a function of vibration amplitude attenuation over distanceIn some cases, exponent values may deviate considerably from the approximate values given in gure 1, for ins
46、tance due to extreme stratication of the soil, the presence of structures, discontinuities in the ground, and interaction between several vibration sources.In such cases, n is to be determined on a case-by-case basis, using gure 1 as a guide. In this gure, the n values were based on the dispersion o
47、f waves in natural soil generated by an impulsive source. 3Groundwater is conducive to the propagation of compression waves, but inuences surface waves only slight-ly.Another factor which causes amplitude attenuation is the absorption of vibration energy by the soil (mate-rial damping), which is fre
48、quency-dependent (as expressed by the term exp a(R R1) in equation (1). The damping factor, D, included in a is dependent on the soil structure, its compactness and the dynamic deforma-tion amplitude. When making preliminary investigations and estimations, D is not to be taken as being greater than
49、0,01 for regolith 2; any higher values are to be veried. The denition of the coefcient of attenuation im-plies that high-frequency vibration is damped to a greater extent than low-frequency vibration (see gure 2).Normalizedvibrationvelocity,n/n1Distance R/R1, in mPage 6DIN 4150-1:2001-06Figure 2: Effect of vibration energy absorption by the soil on amplitude attenuation with increasing distance, as a factor of frequency (for D = 0,01 and