ImageVerifierCode 换一换
格式:PDF , 页数:26 ,大小:2.51MB ,
资源ID:673322      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-673322.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(DIN EN 19694-4-2016 Stationary source emissions - Determination of greenhouse gas (GHG) emissions in energy-intensive industries - Part 4 Aluminium industry German version EN 19694.pdf)为本站会员(priceawful190)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

DIN EN 19694-4-2016 Stationary source emissions - Determination of greenhouse gas (GHG) emissions in energy-intensive industries - Part 4 Aluminium industry German version EN 19694.pdf

1、October 2016 English price group 13No part of this translation may be reproduced without prior permission ofDIN Deutsches Institut fr Normung e. V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany,has the exclusive right of sale for German Standards (DIN-Normen). !%19“2581422www.din.deDIN EN 19694-

2、4Stationary source emissions Determination of greenhouse gas (GHG) emissions in energyintensive industries Part 4: Aluminium industry;English version EN 196944:2016,English translation of DIN EN 19694-4:2016-10Emissionen aus stationren Quellen Bestimmung von Treibhausgasen (THG) aus energieintensive

3、n Industrien Teil 4: Aluminiumindustrie;Englische Fassung EN 196944:2016,Englische bersetzung von DIN EN 19694-4:2016-10missions de sources fixes Dtermination des missions de gaz effet de serre (GES) dans les industries nergointensives Partie 4: Industrie de laluminium;Version anglaise EN 196944:201

4、6,Traduction anglaise de DIN EN 19694-4:2016-10www.beuth.deDocument comprises 26 pagesDTranslation by DIN-Sprachendienst.In case of doubt, the German-language original shall be considered authoritative.ICS 13.040.40This standard has been included in the VDI/DIN Handbook on air quality, Volume 2. 10.

5、16 DIN EN 19694-4:2016-10 2 A comma is used as the decimal marker. National foreword This document has been prepared by Technical Committee CEN/TC 264 Air quality”, Working Group WG 33 “Greenhouse gas (GHG) emissions in energy-intensive industries”. The responsible German body involved in its prepar

6、ation was the Kommission Reinhaltung der Luft im VDI und DIN Normenausschuss KRdL (Commission on Air Pollution Prevention of VDI and DIN Standards Committee KRdL), Section I Umweltschutztechnik. “EUROPEAN STANDARD NORME EUROPENNE EUROPISCHE NORM EN 19694-4 July 2016 ICS 13.040.40 English Version Sta

7、tionary source emissions - Determination of greenhouse gas (GHG) emissions in energy-intensive industries - Part 4: Aluminium industry missions de sources fixes - Dtermination des missions de gaz effet de serre (GES) dans les industries nergo-intensives - Partie 4: Industrie de laluminium Emissionen

8、 aus stationren Quellen - Bestimmung von Treibhausgasen (THG) aus energieintensiven Industrien - Teil 4: Aluminiumindustrie This European Standard was approved by CEN on 5 May 2016. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving th

9、is European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official

10、versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Aust

11、ria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Swede

12、n, Switzerland, Turkey andUnited Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMIT EUROPEN DE NORMALISATION EUROPISCHES KOMITEE FR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels 2016 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN

13、national Members. Ref. No. EN 19694-4:2016 EEN 19694-4:2016 (E) 2 Contents Page European foreword . 3 Introduction 4 1 Scope 5 2 Normative references 5 3 Terms and definitions . 5 4 List of abbreviated terms . 5 5 Symbols, units and chemical formulae 6 5.1 Symbols and units . 6 5.2 Chemical formulae

14、 7 6 Calculation methods General remarks. 8 6.1 Introduction 8 6.2 Calculation methods for process GHG emissions from primary aluminium production . 8 6.3 Sources of carbon dioxide 9 6.4 Sources of PFC 9 7 Methods for calculation of process carbon dioxide emissions 10 7.1 General . 10 7.2 Tier 1 Met

15、hod using process specific equations with technology typical parameters for carbon dioxide emissions . 10 7.3 Tier 2 Method using process specific equations with facility specific parameters for carbon dioxide emissions . 10 7.4 Calculation of carbon dioxide emissions from prebake processes 10 7.5 B

16、aking furnace carbon dioxide emissions 12 7.6 Calculation of carbon dioxide emissions from the Sderberg process. 16 8 Methods for calculation of PFC emissions . 18 8.1 Introduction . 18 8.2 Tier 1 method for calculating PFC emissions . 18 8.3 Tier 2 method for calculating PFC emissions . 19 8.4 Calc

17、ulation of PFC emissions from aluminium reduction processes 19 8.5 Verification of GHG calculation . 22 9 Key performance indicators. 22 Bibliography . 24 DIN EN 19694-4:2016-10 EN 19694-4:2016 (E) 3 European foreword This document (EN 19694-4:2016) has been prepared by Technical Committee CEN/TC 26

18、4 “Air quality”, the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2017, and conflicting national standards shall be withdrawn at the latest by Janua

19、ry 2017. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and/or CENELEC shall not be held responsible for identifying any or all such patent rights. This document has been prepared under a mandate M/478 given to CEN by the Eur

20、opean Commission and the European Free Trade Association. EN 19694, Stationary source emissions Determination of greenhouse gas (GHG) emissions in energy-intensive industries is a series of standards that consists of the following parts: Part 1: General aspects Part 2: Iron and steel industry Part 3

21、: Cement industry Part 4: Aluminium industry Part 5: Lime industry Part 6: Ferroalloy industry According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus

22、, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United K

23、ingdom. DIN EN 19694-4:2016-10 EN 19694-4:2016 (E) 4 Introduction This European Standard serves the following purposes: measuring, testing and quantifying GHG emissions from the aluminium industry; assessing the level of GHG emissions performance of production processes over time, at production site

24、s; establishing and providing reliable, accurate and quality information for reporting and verification purposes. This European Standard can be used to measure, report and compare the GHG emissions of an aluminium production facility. Data for individual facilities, sites or works may be combined to

25、 measure, report and compare GHG emissions for a company, corporation or group. Direct fuel based emissions are not included; for calculation of this part of the GHG emissions, see EN 196941. The European Standard deals with sector-specific aspects for the determination of greenhouse gas (GHG) emiss

26、ions from aluminium production and is based on documents mentioned under tier 3 of Section 4.4.2.4 of the 2006 IPCC guidelines 6. DIN EN 19694-4:2016-10 EN 19694-4:2016 (E) 5 1 Scope This European Standard specifies a harmonized method for calculating the emissions of greenhouse gases from the elect

27、rolysis section of primary aluminium smelters and aluminium anode baking plants. It also specifies key performance indicators for the purpose of benchmarking of aluminium. This also defines the boundaries. NOTE Other requirements and other EU Directives may be applicable to the product(s) falling wi

28、thin the scope of this standard. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referen

29、ced document (including any amendments) applies. EN 19694-1, Stationary source emissions Determination of greenhouse gas (GHG) emissions in energy-intensive industries Part 1: General aspects 3 Terms and definitions For the purposes of this document, the terms and definitions given in EN 19694-1 and

30、 the following apply. 3.1 aluminium electrolysis section of an aluminium primary smelter where aluminium is converted from aluminium oxide to aluminium metal in electrolysis cells 3.2 anode baking plant production of carbon anodes for use in aluminium prebake electrolysis cells 3.3 PFC gases gas emi

31、tted from aluminium electrolysis consisting of CF4and C2F63.4 grid specific CO2factor CO2factor (t CO2/MWh) associated with the electricity delivered to a specific aluminium smelter from their supplier 4 List of abbreviated terms AE Anode effect CWPB Centre-Worked prebake DAE Direct anode emissions

32、DEE Direct electrolysis emissions GHG Green House Gas DIN EN 19694-4:2016-10 EN 19694-4:2016 (E) 6 HSS Horizontal Stud Sderberg IPCC Intergovernmental Panel on Climate Change PFPB Point Feeder prebake SWPB Side-Worked prebake TIE Electrolysis electricity consumption VSS Vertical Stud Sderberg WBCSD

33、World Business Council for Sustainable Development (WBCSD) WRI World Resources Institute 5 Symbols, units and chemical formulae 5.1 Symbols and units Symbol Quantity Unit AEMAnode effects, (= frequency x average duration) minutes/cell day AEOAnode effect overvoltage millivolts ANC Net anode consumpt

34、ion wt % AshaAsh content in baked anodes wt % AshpAsh content in pitch in weight % wt % AshpcAsh content in packing coke, wt % wt % BA Baked anode production tonne/year BAW Baked anode weight tonne CBACarbon content of baked anodes, wt % CButtCarbon content of anode butts tonne/year CECurrent effici

35、ency for aluminium production % CSMEmissions of cyclohexane soluble matter, kilograms per tonnes aluminium kg/tonne 4CFE Emissions of tetrafluoromethane, kg CF4per year kg/year 26CFEEmissions of hexafluoroethane, kg C2F6per year kg/year 2COECO2emissions in tonnes per year tonne/year EFPCEmission fac

36、tor of Packing Coke, tCO2/t of Packing Coke tonne DIN EN 19694-4:2016-10 EN 19694-4:2016 (E) 7 Symbol Quantity Unit 264CFCFFWeight fraction of 264CFCFdimensionless GAWeight of loaded green anodes =AWAWGBAB tonne/year GAW Green anode weight tonne GWPGlobal warming potential. Use latest GWPdata from I

37、PCC tonnes CO2equivalent/tonne Hw Hydrogen content in green anode wt % MBATotal mass of baked anodes tonne/year MButtTotal mass of anode butts tonne/year MPTonnes aluminium per year tonne/year NACNet anode consumption, tonnes per tonnes aluminium tonne/year OFPCOxidation factor of packing coke (typi

38、cally 1 for this stream) dimensionless OVCOvervoltage coefficient for CF4kgCF4/tAl/mV PCPaste consumption, tonnes per tonnes aluminium tonne PCCPacking coke consumed per tonnes of baked anode tonne PCWPacking coke weight tonne 4CFREmission rates of CF4, kg per tonne of aluminium produced kg/tonne 26

39、CFREmission rates of C2F6, kg per tonne of aluminium produced kg/tonne SaSulphur content in baked anodes wt % 4CFSSlope coefficient for CF4, kg CF4per tonne aluminium per anode effect minute per cell day tonne/effect minute/cell day Wt Waste tar collected tonne/year wt Weight kg or tonne 5.2 Chemica

40、l formulae Al Aluminium Al2O3Aluminium oxide (Alumina) C Carbon CF4Tetrafluoromethane C2F6Hexafluoroethane DIN EN 19694-4:2016-10 EN 19694-4:2016 (E) 8 CO Carbon monoxide CO2Carbon dioxide NaAlF6Sodium aluminium hexafluoride (cryolite) NaF Sodium fluoride PFC Perfluorocarbon 6 Calculation methods Ge

41、neral remarks 6.1 Introduction This standard shall be used in conjunction with EN 19694-1 which contains generic, overall requirements, definitions and rules applicable to the determination of GHG emissions for all energy-intensive sectors, provides common methodological issues and defines the detai

42、ls for applying the rules. The application of this standard to the sector-specific standards ensures accuracy, precision and reproducibility of the results. 6.2 Calculation methods for process GHG emissions from primary aluminium production Figure 1 gives sources of process emissions and references

43、to where in the standard calculation methods are described. Figure 1 Decision tree for process carbon dioxide and perfluorocarbon emissions from primary aluminium production DIN EN 19694-4:2016-10 EN 19694-4:2016 (E) 9 Process CO2emissions in state of the art aluminium smelters comprise around 90 %

44、of total direct CO2equivalent emissions, with the balance of emissions consisting of CO2from fossil fuel combustion and PFC emissions. Guidance on CO2emissions from fuel combustion is not included in this document. Methodology for calculating CO2emissions from the combustion of fuel in anode baking

45、furnaces is described elsewhere 6, 7, while methodology for calculating process CO2emissions is given in Clause 7. 6.3 Sources of carbon dioxide 6.3.1 Electrolysis Most of the CO2emissions result from the electrolytic reaction of the carbon anode with alumina: + +23 22 343Al O C Al CO (1) Carbon dio

46、xide is also emitted during the electrolysis reaction as the carbon anode reacts with other sources of oxygen, primarily from the air. Carbon dioxide is also formed as a result of the Boudouard reaction where CO2reacts with the carbon anode forming carbon monoxide, which is then oxidized to form CO2

47、. Each unit of CO2participating in the Boudouard reaction produces two units of CO2after air oxidation: 22CO +C CO (2) 2222CO +O CO (3) All carbon monoxide formed is assumed to be converted to CO2. By industry convention no correction is made for the minute amount of carbon consumed as PFCs rather t

48、han CO2emissions. No CO2is produced from cathode consumption unless there is on-site incineration and no recommendation is included here for such operations CO2emission from addition of sodium carbonate to electrolyses cells is not included as this is added at infrequent intervals and is an insignif

49、icant source. 6.3.2 Anode baking Another source of CO2emissions, specific to prebake technologies, is the baking of green anodes, wherein CO2is emitted from the combustion of volatile components from the pitch binder and, for baking furnaces fired with carbon based fuels, from the combustion of the fuel source. Some of the packing coke used to cover the anodes is also oxidized, releasing CO2during anode baking. Carbon d

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1